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Preface

This book is based on lecture notes for a series of lectures given at the Ecole normale
supérieure de Paris. The goal of these lectures was first to provide a concise but
comprehensive presentation of measure theory, then to introduce the fundamental
notions of modern probability theory, and finally to illustrate these concepts by
the study of some important classes of stochastic processes. This text therefore
consists of three parts of approximately the same size. In the first part, we present
measure theory with a view toward the subsequent applications to probability
theory. After introducing the basic concepts of a measure on a measurable space
and of a measurable function, we construct the integral of a real function with
respect to a measure, and we establish the main convergence theorems of the
theory, including the monotone convergence theorem and the Lebesgue dominated
convergence theorem. In the subsequent chapter, we use the notion of an outer
measure to give a short and efficient construction of Lebesgue measure. We then
discuss L? spaces, with an application to the important Radon-Nikodym theorem,
before turning to measures on product spaces and to the celebrated Fubini theorem.
We next introduce signed measures and prove the classical Jordan decomposition
theorem, and we also give an application to the classical L”—L? duality theorem.
We conclude this part with a chapter on the change of variables formula, which is a
key tool for many concrete calculations. In view of our applications to probability
theory, we have chosen to present the “abstract” approach to measure theory, in
contrast with the functional analytic approach. Concerning the latter approach, we
only state without proofs two versions of the Riesz-Markov-Kakutani representation
theorem, which is not used elsewhere in the book.

The second part of the book is devoted to the basic notions of probability theory.
We start by introducing the concepts of a random variable defined on a probability
space, and of the mathematical expectation of a random variable. Although these
concepts are just special cases of corresponding notions in measure theory, we
explain how the point of view of probability theory is different. In particular the
notion of the pushforward of a measure leads to the fundamental definition of the
law or distribution of a random variable. We then provide a thorough discussion of
the notion of independence, and of its relations with measures on product spaces.
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Although we have chosen not to develop the theory of measures on infinite product
spaces, we briefly explain how Lebesgue measure makes it possible to construct
infinite sequences of independent real random variables, as this is sufficient for all
subsequent applications including the construction of Brownian motion. We then
study the different types of convergence of random variables and give proofs of
the law of large numbers and the central limit theorem, which are the most famous
limit theorems of probability theory. The last chapter of this part is devoted to the
definition and properties of the conditional expectation of a real random variable
given some partial information represented by a sub-o-field of the underlying
probability space. Conditional expectations are the key ingredient needed for the
definition and study of the most important classes of stochastic processes.

Finally, the third part of the book discusses three fundamental types of stochastic
processes. We start with discrete-time martingales, which may be viewed as
providing models for the evolution of the fortune of a player in a fair game.
Martingales are ubiquitous in modern probability theory, and one could say that
(almost) any probability question can be solved by finding the right martingale.
We prove the basic convergence theorems of martingale theory and the optional
stopping theorem, which, roughly speaking, says that, independently of the player’s
strategy, the mean value of the fortune at the end of the game will coincide with
the initial one. We give several applications including a short proof of the strong
law of large numbers. The next chapter is devoted to Markov chains with values in
a countable state space. The key concept underlying the notion of a Markov chain
is the Markov property, which asserts that the past does not give more information
than the present, if one wants to predict the future evolution of the random process
in consideration. The Markov property allows one to characterize the evolution of
a Markov chain in terms of the so-called transition matrix, and to derive many
remarkable asymptotic properties. We give specific applications to important classes
of Markov chains such as random walks and branching processes. In the last
chapter, we study Brownian motion, which is now a random process indexed by
a continuous time parameter. We give a complete construction of (d-dimensional)
Brownian motion and motivate this construction by the study of random walks over
a long time interval. We investigate remarkable properties of the sample paths of
Brownian motion, as well as certain explicit related distributions. We conclude
this chapter with a thorough discussion of the relations between Brownian motion
and harmonic functions, which is perhaps the most beautiful connection between
probability theory and analysis.

The first two parts of the book should be read linearly, even though the chapter
on signed measures may be skipped at first reading. A good understanding of the
notions presented in the four chapters of Part II is definitely required for anybody
who aims to study more advanced topics of probability theory. In contrast with the
other two parts, the three chapters of Part III can be read (almost) independently,
but we have tried to emphasize the relevance of certain fundamental concepts in
different settings. In particular, martingales appear in the Markov chain theory in
connection with discrete harmonic functions, and the same connection (involving
continuous-time martingales) occurs in the study of Brownian motion. Similarly, the
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strong Markov property is a fundamental tool in the study of both Markov chains
and Brownian motion.

The prerequisite for this book is a good knowledge of advanced calculus (set-
theoretic manipulations, real analysis, metric spaces). For the reader’s convenience
we have recalled the basic notions of the theory of Banach spaces, including
elementary Hilbert space theory, in an appendix. Apart from these prerequisites,
the book is essentially self-contained and appropriate for self-study. Detailed proofs
are given for all statements, with a couple of exceptions (the two versions of the
Riesz-Markov-Kakutani theorem, the existence of conditional distributions) which
are not used elsewhere.

A number of exercises are listed at the end of every chapter, and the reader
is strongly advised to try at least some of them. Some of these exercises are
straightforward applications of the main theorems, but some of them are more
involved and often lead to statements that are of interest though they could not
be included in the text. Most of these exercises were taken from exercise sessions
at the Ecole normale supérieure, and I am indebted to Nicolas Curien, Grégory
Miermont, Gilles Stoltz, and Mathilde Weill for making these problems available
to me. It is a pleasure to thank Mireille Chaleyat-Maurel for her careful reading of
the manuscript. And finally, last but not least, I am indebted to several anonymous
reviewers whose numerous remarks helped me to improve the text.

Orsay, France Jean-Francois Le Gall
May 2022
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Chapter 1 )
Measurable Spaces s

The basic idea of measure theory is to assign a nonnegative real number to every
subset of a given set. This number is called the measure of the subset and is required
to satisfy a certain additivity property (informally, the measure of a disjoint union
should be the sum of the measures of the sets in this union). This additivity property
is natural if one thinks of a measure as an abstract generalization of the familiar
notions of length, area or volume. For deep mathematical reasons, it is not possible
in general to define the measure of every subset, and one has to restrict to a certain
class (o-field) of subsets, which is called the class of measurable sets. A set given
with a o-field is called a measurable space.

This chapter introduces the fundamental notions of a o -field, of a measure on a
measurable space, and of a measurable function, which will be used in Chapter 2
when we construct the Lebesgue integral. In view of our forthcoming applications
to probability, it is important that we develop an “abstract” measure theory, where
no additional structure is required on the underlying space. The last section of the
chapter states the so-called monotone class theorem, which plays an important role
both in measure theory and in probability theory. Roughly speaking, the monotone
class theorem allows one to show that a property known to hold for certain special
sets holds in fact for all measurable sets.

1.1 Measurable Sets

Measurable sets are the “regular” sets of measure theory. We introduce them in an
abstract setting.

Let E be a set. The set of all subsets of E is denoted by P(E). We use the
notation A€ for the complement of a subset A of E. If A and B are two subsets of
E, we write A\B = AN B€.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 3
J.-F. Le Gall, Measure Theory, Probability, and Stochastic Processes,
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14205-5_1&domain=pdf

 889 4612 a 889
4612 a
 
https://doi.org/10.1007/978-3-031-14205-5_1

4 1 Measurable Spaces

Definition 1.1 A o-field A on E is a collection of subsets of E which satisfies the
following properties:

(i) E € A,
(i) Ac A= A e A;
(iii) If A, € Aforeveryn € N, then U A, € A
neN

The elements of A are called measurable sets, or sometimes .4-measurable sets
if there is ambiguity, and we say that (E, A) is a measurable space.

Let us give a few easy consequences of the definition:

1) e A
(2) If A, € Aforevery n € N, one has also m Ay, € A (use (ii) and (iii)).

neN
(3) Since we may take A, = @ for all n > ng, property (iii) implies that A is

closed under finite unions, meaning that the union of finitely many elements of
A isin A, and then A is also closed under finite intersections using (ii).

Examples

e A =P(E). This is the o-field that we (almost) always consider when F is finite
or countable, but not in other cases.

« A ={g, E} is the trivial o-field.

e The collection of all subsets of E that are at most countable, or whose
complement is at most countable, forms a o-field on E.

In view of producing more interesting examples, we note that the intersection
of an arbitrary collection of o-fields on E is a o-field. This leads to the following
definition.

Definition 1.2 Let C be a subset of P(FE). The smallest o-field on E containing C,
denoted by o (C), is the o-field obtained as the intersection of all o-fields on E that
contain C. We call o (C) the o-field generated by C.

If Ay,..., Ay are o-fields on E, we will use the notation A; v --- vV Ay =
o(A; U---U Ay) for the smallest o-field that contains A; U - - - U Ay.

The Borel o-Field To illustrate the interest of the notion of the o-field generated
by a class of sets, let us consider the case where E is a topological space.

Definition 1.3 Suppose that E is a metric space, or more generally a topological
space, and let O be the class of all open subsets of E. The o-field o (O) is called the
Borel o-field on E and is denoted by B(E).

The Borel o-field on E is thus the smallest o-field on E that contains all open
sets. The elements of B(E) are called Borel subsets of E. Clearly, closed subsets
of E are Borel sets. The o-field B(R) is also generated by the class of all intervals
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(a,b) fora,b € R, a < b, or even by the class of all (—oco,a) fora € R, see
Exercise 1.1.

In what follows, whenever we consider a topological space, for instance R or RY,
we will assume unless otherwise indicated that it is equipped with its Borel o -field.

The Product o-Field Another very important example of the notion of the o-field
generated by a class of sets is the product o -field.

Definition 1.4 Let (E1, A;) and (E>, A3) be two measurable spaces. The product
o-field A; ® Aj is the o-field on E| x E> defined by

Al A :=0(A1 x Ay; A1 € Ay, Ay € A)).

In other words, A; ® Aj is the smallest o-field that contains all “rectangles”
Ay x Axfor A; € Ay and A € A».

Let us state a useful technical lemma. Recall that a metric space is said to be
separable if it contains a dense sequence.

Lemma 1.5 Suppose that E and F are separable metric spaces, and equip the
product E x F with the product topology. Then B(E x F) = B(E) @ B(F).

Proof The property B(E) ® B(F) C B(E x F) holds without the separability
assumption. To verify this property, first fix an open subset B of F. Then the class
of all sets A € B(E) such that A x B € B(E x F) contains all open subsets of E,
and is easily checked to be a o -field. It follows that this class must contain B(E) and
thus be equal to B(E). So we have provedthat Ax B € B(Ex F)if A € B(E) and B
is open. We then fix A € B(E) and observe similarly that the class of all B € B(F)
such that A x B € B(E x F) contains all open subsets of F' and is a o-field, so that
this class must be equal to B(F'). Finally we have proved that A x B € B(E x F)
if A € B(E) and B € B(F), which gives the inclusion B(E) ® B(F) C B(E x F).

Conversely, we observe that we can find a countable collection!/ = {U,, : n € N}
of open subsets of E, such that every open subset of E is the union of a subcollection
of U (if (xx)ren is a dense sequence in E, we may define U as the collection of all
open balls of rational radius centered at one of the points x;). Let V = {V,, : n € N}
be a similar collection for F. For every open set O of E x F and everyz = (x,y) €
O, we know that O contains an open set of the form U x V, where U, resp. V, is an
open subset of E, resp. of F, containing x, resp. y. It follows that O can be written
as the union of (at most countably many) sets of the form U,, x V,,,, where n, m € N.
Hence, every open subset of E x F belongs to 5(E) ® B(F), and the definition of
the Borel o-field then implies B(E x F) C B(E) ® B(F). O

In particular, we have B(R?) = B(R) ® B(R).
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1.2 Positive Measures

Let (E, A) be a measurable space.

Definition 1.6 A positive measure on (E, A) is a mapping u : A —> [0, 00]
which satisfies the following properties:

1) @) =0;
(i1) (o-additivity) For every sequence (A;),cn of disjoint measurable sets,

t(UAn) =D ncan.

neN neN

The triple (E, A, ) is called a measure space.
The quantity p(E) is called the total mass of the measure jt.

In what follows, we often say measure instead of positive measure. It is important
that we allow the value +oo: the sum ), i(A,) always makes sense as a
number in [0, oo]. Similarly, if (a,),<N is an increasing sequence (resp. a decreasing
sequence) in [—00, oc], the increasing limit (resp. the decreasing limit) of (a;),eN
exists in [—00, oo] and will be denoted by lim,,—, o 1 a, (resp. lim, . | a).

Property (ii) is called o-additivity. It is crucial that we restrict our attention to
countable collections (A,),eN in this property. Of course, property (ii) includes the
case where all A,’s are empty for n > ng, which corresponds to the property of
finite additivity.

Properties
(1) If A C B, then u(A) < p(B). If in addition w(A) < oo, then

W(B\A) = u(B) — pu(A) .
) IfA,Be A,
W(A) + u(B) = (AU B) + u(ANB).

(3) (Continuity from below) If A,, € Aand A, C A4, foreveryn € N,
()=t 1 uca,
neN

(4) (Continuity from above) If B, € A and B, C B, for every n € N, and if
u(B1) < oo, then

w(() Ba) = lim | (B,

neN
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(5) If A, € A, forevery n € N, then

u( U An) <Y (A,

neN neN

Properties (1) and (2) are easy and we omit the proof. Let us prove (3), (4) and
(5). For (3), we set C1 = A and, for every n > 2,

Cn = Ap\Ap—1
in such a way that | J, .y An = (U,,ey Cn- Since the C,;’s are disjoint,
N
u(UNA) = M(LIJ\TC> = %u(cn) = lim 1 ;u<cn) = lim 1 u(An).

For (4), we set A, = Bj\B, for every n, so that the sequence (A,),eN is
increasing. Then,

(B = u( () Ba) = n(B\ ) Ba) = u( | An)

neN neN neN
= lim 1 w(A,)
n—o0
= lim 1 (u(B1) — n(Bn))
n—o0
= p(By) — lim | wu(By).
n—0o0
The condition u(B1) < oo is used (in particular) to obtain that u(A,) = u(By) —

w(Bn).
Finally, for (5), we set C1 = A1, and then, for every n > 2,

n—1
Co = An\ | A
k=1

The sets C,, are disjoint, and thus

n(Uan) =n(Ucn) =D =Y un.

neN neN neN neN
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Examples

()

(b)

()

Let E = N, and A = P(N). The counting measure is defined by
WU(A) ;= card(A).

(This definition of the counting measure makes sense on the measurable space
(E,P(E)) for any set E.) This example shows that the condition u(B1) < 0o
in property (4) above cannot be omitted. Indeed, if we take

B,={nn+1,n+2,...}

for every n € N, we have u(B,) = oo whereas (),cy Bn = @ and thus
M(mneN B,) =0.

If A is a subset of E, the indicator function of A is the function 14 defined on
E and taking values in {0, 1}, such that, for x € E,

lifxeA,
lA“y_{Oﬁx¢A.
Let (E, A) be a measurable space, and fix x € E. Setting 8, (A) = 14(x) for
every A € A defines a probability measure on E, which is called the Dirac
measure (or sometimes the Dirac mass) at x. More generally, if (x;),eN iS a
sequence of points of E and («,),eN is a sequence in [0, co], we can consider
the measure ), . @n 0y, defined by

(D, ) (A i= D" 0, (A) = D" ).

neN neN neN

This is called a point measure on E.

Lebesgue measure. There exists a unique positive measure A on (R, B(R)) such
that, for every compact interval [a, b] of R, we have A([a, b]) = b — a. The
existence of this measure will be established in Chapter 3, and the fact that
there is at most one such measure is discussed at the end of the present chapter.

Restriction of a Measure If i is a positive measure on (E, A), and C € A, the
restriction of u to C is the measure v on (E, A) defined by

V(A) = n(ANC), YA € A
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Definitions

e The measure w is said to be finite if u(E) < oo.

e The measure p is a probability measure if w(E) = 1, and we then say that
(E, A, u) is a probability space.

» The measure u is called o-finite if there exists a sequence (E},),cn of measurable
sets such that £ = U E, and u(E,) < oo for every n. (Clearly the sequence

neN
(En)neN can be taken to be increasing or the E,’s can be assumed to be disjoint.)

* We say that x € E is an atom of the measure p if uw({x}) > 0 (here we implicitly
assume that singletons belong to the o -field .A, which will always be the case in
our applications).

* The measure u is called diffuse if it has no atoms.

We conclude this section with a useful lemma concerning the limsup and the
liminf of a sequence of measurable sets. If (A,),en 1S a sequence of measurable
subsets of E, we set

o0 (o) o0 o0
limsup A, = (") <U Ak> . liminfA, = ] (ﬂ Ak).
n=1 “k=n n=1 “k=n
It is immediate that liminfA, C limsupA,. Also recall that, if (a,)nen is a
sequence of elements of R = R U {—o0, 400}, we define

limsupa, = nlingo N (supak) , liminfa, = nlim 0 (inf ak),

k>n —0 k>n

where both limits exist in R (lim sup a, and liminfa, are respectively the greatest
and the smallest accumulation points of the sequence (ay),en in R).

Lemma 1.7 Let 1 be a measure on (E, A). Then,

w(liminf A,) < liminf w(A,).

(e.¢]
If  is finite, or more generally zfu( U An) < 00, we have also

n=1
u(limsup A,) > limsup u(A,).

Proof Foreveryn € N,

o
M( ﬂ Ak) < gggu(Ak),
k=n -
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and thus, using the continuity from below (property (3) above),

u(diminf A,) < lim inf w(Ag) = liminf w(A,).
n—>o0 k>n

The proof of the second part of the lemma is similar, but we now rely on the
continuity from above (property (4)), and use the finiteness assumption to justify
the application of this property. O

Remark Example (a) above shows that the finiteness assumption cannot be omitted
in the second part of the lemma.

1.3 Measurable Functions

We now turn to measurable functions, which are the functions of interest in measure
theory.

Definition 1.8 Let (E, .A) and (F, B) be two measurable spaces. A function f :
E —> F is said to be measurable if

VBeB, f~4(B) e A

When E and F are two topological spaces equipped with their respective Borel
o-fields, we also say that f is Borel measurable (or is a Borel function).

Remark To emphasize the dependence on the o-field A, we often say that f is A-
measurable. Usually, the choice of B will be clear from the context, but this will not
necessarily be the case for the o -field A (especially in probability theory).

Proposition 1.9 The composition of two measurable functions is measurable.

This is immediate by writing (g o )~1(C) = f~' (g~ 1(C)).
The following criterion of measurability is often useful.

Proposition 1.10 Ler (E, A) and (F, B) be two measurable spaces, and consider
afunction f : E —> F. In order for f to be measurable, it suffices that there exists
a subclass C of B such that o (C) = B and the property f ~V(B) € A holds for every
B eC.

Proof Set
G={BeB:f'(B)eA).

Then it is straightforward to verify that G is a o -field. By our assumption, C C G. It
follows that G contains o (C) = B, which was the desired result. |
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Example Suppose that (F,B) = (R, B(R)). To show that f is measurable, it
suffices to prove that the sets f ~1((a, b)) are measurable, for every a < b. Itis
even enough to consider the sets N (—00, a)) fora € R.

Corollary 1.11 Suppose that E and F are two topological spaces equipped with
their respective Borel o -fields. Then any continuous function f : E —> F is Borel
measurable

Proof We apply Proposition 1.10 to the class C of open subsets of F. O

Operations on Measurable Functions

Lemma 1.12 Let (E, A), (F1, By) and (F, By) be measurable spaces, and equip
the product F| x F, with the product o-field By ® By. Let fi : E — F| and
fo : E —> F, be two functions and define f : E —> F1 X F, by setting f(x) =
(f1x), fo(x)) for every x € E. Then f is measurable if and only if both f| and f>
are measurable.

Proof The “only if” part is very easy and left to the reader. For the “if” part, we
apply Proposition 1.10 to the class

C ={B1 x By; By € By, B € B}

Since f~1(B1 x By) = £ ' (BN f5 '(B2) € Aif Bi € By and By € Ba, we
immediately get the desired result. O

Corollary 1.13 Let (E, A) be a measurable space, and let f and g be measurable
functions from E into R. Then the functions f + g, fg, inf(f, g), sup(f, g), f+ =
sup(f, 0), f~ = sup(—f, 0) are measurable.

The proof is easy. For instance, f 4 g is the composition of the two functions
x — (f(x), gx)) and (a,b) —> a + b which are both measurable (the second
one because it is continuous, using also the equality B(R) ® B(R) = B(R?)). The
other cases are left to the reader.

Recall the notation R = R U {—o0, +00} for the extended real line, which is
equipped with its usual topology. Similarly as in the case of R, the Borel o-field of
R is generated by the intervals [—00, a) fora € R.

Proposition 1.14 Let (f;)neN be a sequence of measurable functions from E into

R. Then,

sup fn , inf f, , limsup f,, , liminf f,
neN neN n—00 n—00
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are also measurable functions. In particular, if the sequence (f,) converges
pointwise, its limit lim f,, is a measurable function.

Proof Set f(x) = inf,cn fr (x). To prove that f is measurable, it enough to verify
that f~!([—o0, a)) € A for every a € R (use Proposition 1.10). However,

[N =00, @)) = {x tinf f(x) < a} = | Jlx: fu(x) <a)

neN

giving the desired property. The case of sup, . f» 1s treated similarly.
Then, we immediately get that

liminf f, = sup ( inf fk)
n—oo k>n

n>0 =
is measurable. O

The following technical lemma is often useful.

Lemma 1.15 Let (f,)neN be a sequence of measurable functions from E into R.
The set A of all x € E such that f,(x) converges in R as n — oo is measurable.
Furthermore, the function h : E —> R defined by

limy oo fu(x) ifx € A,

h(x) = {0 xd A

is measurable.

Proof For the first assertion, let G be the measurable function from E into R2
defined by G(x) := (liminf f,(x), limsup f,(x)), and set A = {(x,x) : x € R}.
Then

A ={x € E:—o0 < liminf f,(x) = limsup f,(x) < oo} = G~ (A).

The measurability of A follows since A is a measurable subset of R2 (note that

{(x, x) : x € R} is measurable as a closed subset of Rz).
Then let F € B(R) with 0 ¢ F. We observe that

WY (F)=AN{x € E : limsup f,(x) € F}

and use the previous proposition to get that 2~! (F) is measurable. If 0 € F we just
write k=1 (F)¢ = h=1(F©). O

Pushforward of a Measure The following definition is especially important in
probability theory as it will lead to the fundamental notion of the law of a random
variable (Definition 8.2).
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Definition 1.16 Let (E, A) and (F, B) be two measurable spaces andlet¢ : E —>
F be a measurable function. Let u be a positive measure on (E, A). The formula

v(B) = u(p '(B)), YB e B

defines a positive measure v on (F, B), which is called the pushforward of . under
¢ and denoted by ¢ (i), or sometimes by @, /L.

The fact that v(B) = ,u((p_l(B)) defines a positive measure on (F, B) is easy
and left to the reader. The measures © and ¢ () have the same total mass, but it
may happen that u is o-finite while ¢ (w) is not (for instance, if p is o -finite and not
finite, and ¢ is a constant function).

1.4 Monotone Class

In this section, we state and prove the monotone class theorem, which is a
fundamental tool in measure theory and even more in probability theory.

Definition 1.17 A subset M of P(E) is called a monotone class if

(i) E e M.
(i) If A, B € Mand A C B, then B\A € M.
(iii) If A, € M and A, C A, 4 forevery n € N, then U A, € M.
neN

Any o-field is also a monotone class. Conversely, a monotone class M is a o-
field if and only if it is closed under finite intersections. Indeed, if M is closed
under finite intersections, then by considering the complementary sets we get that
M is closed under finite unions, and using property (iii) that M is also closed under
countable unions.

As in the case of o-fields, it is clear that any intersection of monotone classes is
a monotone class. If C is any subset of P(E), we can thus define the monotone class
M(C) generated by C as the intersection of all monotone classes of E that contain

C.

Theorem 1.18 (Monotone Class Theorem) Let C C P(E) be closed under finite
intersections. Then M(C) = o (C). Consequently, if M is any monotone class such
that C C M, we have also o (C) C M.

Remark on the Terminology Monotone classes defined in Definition 1.17 are
often called A-systems, and classes closed under finite intersections are called -
systems. The preceding theorem is then known as the = — A theorem.
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Proof 1t is enough to prove the first assertion. Since any o -field is a monotone class,
it is clear that M(C) C o(C). To prove the reverse inclusion, it is enough to verify
that M(C) is a o-field. As explained above, it suffices to verify that M (C) is closed
under finite intersections.

For every A € P(E), set

Mpa={Be MQC):ANBec ML)}

Fix A € C. Since C is closed under finite intersections, we have C C M 4. Let us
verify that M 4 is a monotone class:

e E € My is trivial.

e IfB,B'’ e Mgand B C B/,then AN(B'\B) = (ANB)\(ANB) € M(C) and
thus B'\B € M.

e If B, € My for every n > 0 and the sequence (By),>0 is increasing, we have
AN (UpenBp) = Upen(A N By) € M(C) and therefore U,enB, € M 4.

Since M4 is a monotone class that contains C, M 4 also contains M (C). We
have thus obtained that

YA eC, VBe M({C), ANB € M(C).

This is not yet the desired result, but we can use the same idea one more time.
Precisely, we now fix A € M(C). According to the first part of the proof, C C M 4.
By exactly the same arguments as in the first part of the proof, we get that M4 is
a monotone class. It follows that M(C) C M4, which shows that M (C) is closed
under finite intersections, and completes the proof. O

Corollary 1.19 Let u and v be two measures on (E, A). Suppose that there exists
a class C C A, which is closed under finite intersections, such that o (C) = A and
w(A) = v(A) forevery A € C.

(D) If w(E) = v(E) < 00, then we have i = v.
(2) If there exists an increasing sequence (Ep)qen of elements of C such that E =
Upen En and w(E,) = v(E,) < oo for every n € N, then pu = v.

Proof

(1) LetG ={A € A: u(A) = v(A)}. By assumption, C C G. On the other hand,

it is easy to verify that G is a monotone class. For instance, if A, B € G and

A C B, we have u(B\A) = w(B) — u(A) = v(B) —v(A) = v(B\A), and
hence B\ A € E (note that we here use the fact that both x and v are finite).

If follows that G contains M (C), which is equal to ¢ (C) by the monotone

class theorem. By our assumption o (C) = A, we get G = A, which means that

uw=v.
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(2) Forevery n € N, let 1, and v, be the respective restrictions of y and v to E,,.
Part (1) applies to u, and v,, and we get i, = v,. Finally, for every A € A,

w(A) = 1lim 1 w(AN E,) = lim } v(A N E,) = v(A). O

Consequences Uniqueness of Lebesgue measure. If there exists a positive measure
X on (R, B(R)) such that A([a, b]) = b — a for every reals a < b, then this measure
is necessarily unique. Indeed, supposing that A’ is another measure satisfying the
same property as A, we can apply part (2) of the corollary to u = A and v = A/,
taking for C the class of all compact intervals (which generates the Borel o-field)
and E, = [—n, n] foreveryn € N.

The same argument shows that, for every r > 0, the pushforward of Lebesgue
measure under the mapping x > rx is r 4.

In a similar manner, one deduces from the previous corollary that a finite measure
n on R is characterized by the values of u((—o0, a]) for every a € R.

1.5 Exercises

Exercise 1.1 Check that the o-field B(R) is also generated by the class of all
intervals (a, b), a,b € R, a < b, or by the class of all (—o0,a), a € R, or even
by the intervals (—oo, a), a € Q (one can also replace open intervals by closed
intervals).

Exercise 1.2 For every integer n > 1, let F,, be the o-field on N defined by F,, :=
o ({1}, {2}, ..., {n}). Show that (F,),>1 is an increasing sequence of o -fields of N,
but U, >1F, is not a o-field.

Exercise 1.3 Let C([0, 1], R?) be the space of all continuous functions from [0, 1]
into R?, which is equipped with the topology induced by the sup norm. Let
C; be the Borel o-field on C([0, 1], RY), and let C> be the smallest o-field on
([0, 1], Rd) such that all functions f +— f(¢), for ¢t € [0, 1], are measurable from
(C([0, 11, RY), Co) into (RY, B(RY)) (justify the existence of this smallest o-field).

(1) Show that C C C;j.
(2) Show that any open ball in C ([0, 1], Rd) is in Cs.
(3) Conclude that C; = C;j.

Exercise 1.4 Let (E, A, 1) be a measure space, with w(E) > 0,and let f : E —>
R be a measurable function. Show that, for every ¢ > 0, there exists a measurable
set A € Asuchthat u(A) > 0and |f(x) — f(y)| < ¢ forevery x, y € A.

Exercise 1.5 Let E be an arbitrary set, and let A be a o-field on E. Show that A
cannot be countably infinite. (Hint: By contradiction, suppose that A4 is countably
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infinite and introduce the afoms of A defined for every x € E by

E, = ﬂ A.

AcA,xeA

Then show that £, = E, defines an equivalence relation on E, and that the
equivalence classes for this relation form a partition of E by measurable sets.)

Exercise 1.6 (Egoroff’s Theorem) Let (E, A) be a measurable space and let u be
a finite measure on E. Let (f;),cr be a sequence of measurable functions from E
into R, and assume that f,,(x) —> f(x) for every x € E. Show that, for every
¢ > 0, there exists A € A such that u(E\A) < & and the convergence of the
sequence f, to f holds uniformly on A. Hint: Consider, for every integers k,n > 1,
the set

o0

En=|reE:ipm-rwi= )

j=n

Exercise 1.7 Let f : [0, 1] — R be a continuous function. For every y € R, let
N(y) € {0,1,2,...} U{oo} be the number of solutions of the equation f(x) = y.
Show that y — N(y) is a measurable function.

Exercise 1.8 This exercise uses the existence of Lebesgue measure on R, which is
the unique measure A on (R, B(R)) such that A([a, b]) = b — a for every a < b (cf.
Chapter 3).

(1) Lete > 0. Construct a dense open subset O, of R such that A(O;) < .
(2) Infer that there exists a closed subset F, of R with empty interior such that
AMANFg) = A(A) — ¢ forevery A € B(R).



Chapter 2 )
Integration of Measurable Functions Shethie

In this chapter, we construct the Lebesgue integral of real-valued measurable
functions with respect to a positive measure. The definition of the Lebesgue integral
is very natural and easy for (nonnegative) simple functions, which take only finitely
many values. Then the integral of a nonnegative measurable function f is obtained
as the supremum of integrals of simple functions g that are bounded above by f.
For functions taking both positive and negative values, the definition proceeds by
linearity, but one must restrict to integrable functions f, which are such that the
integral of | f| is finite.

After constructing the integral of measurable functions, we establish the three
main convergence theorems, namely the monotone convergence theorem, Fatou’s
lemma and the dominated convergence theorem. These remarkably simple state-
ments are of constant use in applications of the Lebesgue integral, both in measure
theory and in probability theory. Roughly speaking, they provide conditions that
ensure that the integral of the limit of a sequence of measurable functions is equal
to the limit of the integrals of the functions in the sequence. The last section gives
typical applications to the continuity and differentiability of integrals of functions
depending on a parameter. Important special cases of these applications are the
Fourier transform and the convolution of functions.

2.1 Integration of Nonnegative Functions

Throughout this chapter, we consider a measurable space (E, A) equipped with a
positive measure [.

Simple Functions A measurable function f : E —> R is called a simple function
if it takes only finitely many values. Let o1, a2, . . ., &, be the distinct values taken
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by f. We may assume that these values are ranked in increasing order, o) < o <
- < oy, and write

)= il (x)
i=1

where, for every i € {1,...,n}, we have set A; = f~!({e;}) € A, and we recall
that 14 stands for the indicator function of the set A. We note that E is the disjoint
union of Ay, ..., A,. The formula f = Z?zl a; 14, will be called the canonical
representation of f.

Definition 2.1 Let f be a simple function taking values in Ry with canonical

representation f = Y+, o; 14,. The integral of f with respect to u is defined
by

ffdu =i (A
i=1

with the particular convention 0 x co = 0 in the case where o; = 0 and u(A;) = oo.
In particular, for every A € A,

/ 1adi = p(A).

The sum Z?:l a; (A;) makes sense as an element of [0, co], and the value oo
may occur if @(A;) = oo for some i. The fact that we consider only nonnegative
simple functions avoids having to consider expressions such has co — co. The
convention 0 x co = 0 will be in force throughout this book.

Suppose that we have another expression of the simple function f in the form

f= Zﬁj 13,
j=1

where the measurable sets B; still form a partition of E but the reals 8; are no
longer necessarily distinct. Then it is easy to verify that we have also

/fdu = Bj u(B)).
j=1
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Indeed, for every i € {1,...,n}, A; must be the disjoint union of the sets B; for
indices j such that 8; = «;. By the additivity property of the measure u, we have
thus

AN =Y uB)
{j:Bj=ai}

and this leads to the desired result.

Properties Let f and g be nonnegative simple functions on E.

(1) Foreverya,b e Ry,
/(af—l—bg)du:a/fdu—i—b/gdu.
(2) If f < g, meaning that f(x) < g(x) forevery x € E,

ffdMS/gdu-

Proof
(1) Let

n m
[ STTR Ve
i=1 k=1

be the canonical representations of f and g. By writing each set A; as the
disjoint union of the sets A; N A}, k € {1, ..., m}, and similarly each set A as
the disjoint union of the sets A; N A;{, i €{l1,...,n}, we see that we can write

14 14
fZZ,leB,agZZVJIB,
j=1 j=1

with the same partition By, ..., By of E (but the numbers 8;, resp. the numbers
yj, are no longer necessarily distinct). By the remark following the definition
of [ fdu, we have

)4 p
/fd,uIZ,Bj,Uv(Bj)v /gdu=ZVjM(Bj)~
j=1 j=1
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and similarly [(af + bg)du = le(a,Bj + by;) u(B;). The desired result
follows.
(2) By part (1), we have

/gdu=/fdu+/(g—f)duszdu- 0

We let £, stand for the space of all nonnegative simple functions.

Definition 2.2 Let f : E — [0, co] be a measurable function. The integral of f
with respect to u is defined by

/fdu:: sup /hd,u.
he&i h<f

Property (2) above shows that this definition is consistent with the preceding one
when f a simple function. We note that we allow f to take the value +oo. This
turns out to be very useful in practice.

The integral of f with respect to p is often written in different ways. The
expressions

/fd/t, /f(X)dM(X), /f(X)M(dX),/M(dX)f(X)

all refer to the same quantity. Also, if A is a measurable subset of FE, it will be

convenient to write
/fdu=/1Afdu-
A

Important Convention In the remaining part of this chapter, “nonnegative mea-
surable function” means “measurable function with values in [0, 00]” (note however
that simple functions take finite values by definition).

Proposition 2.3 Let f and g be nonnegative measurable functions on E.

W Iff<g [fdu<[gdu
() Ifu(fx € E: f(x) > 0}) =0, then [ f du = 0.

Property (1) is obvious from the definition. As for property (2), it is enough to
verify it when f is a simple function (if h € £ and h < f,{x € E : h(x) > 0} C
{x € E: f(x) > 0}) and then this is also obvious from the definition.
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Theorem 2.4 (Monotone Convergence Theorem) Let (f,;)qen be a sequence of
nonnegative measurable functions on E such that f, < fu41 for everyn € N. For
everyx € E, set f(x) =1im 1 f,(x). Then,

[ rau=jim 1 [ fau.

Proof The function f is measurable by Proposition 1.14. By property (1) above,
we have

/fduzngngoT/fndu

and it thus suffices to establish the reverse inequality. To this end, let h =
Zle a;1,4, be a nonnegative simple function such that & < f. Leta € [0, 1),
and, for every n € N, set

Ey={x € E:ah(x) < fu(x)}.

Then E, is measurable. Furthermore, using the fact that f; increases to f, and the
condition a < 1, we obtain that E is the increasing union of the sequence E;,.
Then, the definition of E, readily gives the inequality f, > alg,h, hence

k
[ fran= [atphan=ay ancain ey,

i=1

Since E is the increasing union of the sequence (E,),eN, We get that A; is also
the increasing union of the sequence (A; N E,),eN, for every i € {1,...,k}, and
consequently w(A; N E,) 1 n(A;) asn — oo. It follows that

k
tim 1 [ oz arucan =a [nan
n—o0

i=1

By letting a tend to 1, we get
lim 1 | fudu > /hd,u.
n—o0

Since [ f dp is the supremum of the quantities in the right-hand side when & varies
among {g € &4 : g < f}, we obtain the desired inequality. O
Proposition 2.5

(1) Let f be a nonnegative measurable function on E. There exists an increasing
sequence (fu)nen of nonnegative simple functions such that f, —> f
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pointwise asn — oo. If f is also bounded, the sequence ( f,),eN can be chosen
to converge uniformly to f.

(2) Let f and g be two nonnegative measurable functions on E and a,b € R;.
Then,

/(af—l—bg)du:a/fdu—i—b/gdu.

(3) Let (fu)neN be a sequence of nonnegative measurable functions on E. Then

[(Za)an=3 [ 5w

neN neN

Remark )", fa is an increasing limit of nonnegative measurable functions and
thus also measurable.

Proof

(1) Foreveryn € N, foreveryi € {0, 1,...,n2" — 1}, set

Ay ={xe€eE: f(x)>n}
Bpi={x€eE:i27" < f(x) <@+ 127"}

Consider then, for every n € N, the simple function

n2"—1 .

l
fn = Z 2n an,i +n1An‘
i=0

One easily verifies that (f;),eN 1S an increasing sequence that converges to f.
If f is bounded, we have 0 < f — f;; < 27" as soon as n is large enough.

(2) By (1), we can find two increasing sequences ( f;;)neN and (g, )nen of nonnega-
tive simple functions that converge to f and g respectively. Then af +bg is also
the increasing limit of af,, + bg, as n — oo. Hence, by using the monotone
convergence theorem and the properties of integrals of simple functions, we
have

/ (af +bg)di = lim 1 f (afy +bgdu = lim 1 (a f fudu+b / o0 dn)

=a[fdu+bfgdu.
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(3) Forevery m > 1, part (2) gives

/(éfn)dﬂzg/fndﬂ-

and it then suffices to let m 1 oo using the monotone convergence theorem. O

Remark Consider the special case where E = N and p is the counting measure.
Then, for any nonnegative function f on E, we get

[ ran=3ro.
neN

by applying (3) to the functions f,(k) = f(n)1,(k). Then, considering the
functions f;, (k) = an r, we also get the well-known property

Y (Tane) = (Tems)

keN neN neN keN

for any double sequence (a, k)n ken Of nonnegative real numbers.

Corollary 2.6 Let g be a nonnegative measurable function, and, for every A € A,
set

V(A)=/Agdu=/1Agdu-

Then v is a positive measure on E, which is called the measure of density g with
respect to i, and denoted by v = g - . Moreover, for every nonnegative measurable

function f,
/fdv:/fgdu. 2.1)
. dv
Instead of v = g - u, one often writes v(dx) = g(x) u(dx), or g = du’ If
n

we have both v(dx) = g(x) u(dx) and 6(dx) = h(x)v(dx), then we have also
0(dx) = h(x)g(x) u(dx). This “associativity” property immediately follows from
2.1).
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Proof 1t is obvious that v(@) = 0. On the other hand, if (A,),cN is a sequence of
disjoint measurable sets, we have

v(UAn> =/%1Angdu=

neN

> [ tagau =3 vian,

neN neN

using Proposition 2.5 (3). We have proved that v is a measure.

Formula (2.1) holds when f is an indicator function by the definition, it then
extends to the case when f is a nonnegative simple function by linearity (using
Proposition 2.5 (2)). Finally, in the general case, we use the fact that f is the
increasing limit of a sequence of nonnegative simple functions (Proposition 2.5 (1))
together with the monotone convergence theorem. O

Remark For every A € A, the condition u(A) = 0 implies v(A) = 0 (by
Proposition 2.3 (2)). We will see later, under suitable assumptions, that conversely
a measure v that satisfies this property must be of the form f - u.

We say that a property depending on x € E holds p(dx) almost everywhere, or
W a.e. (or even a.e. if there is no risk of confusion), if it holds for every x € E except
possibly for x belonging to a set of u-measure zero. For instance, if f and g are two
measurable real functions on E, f = g, i a.e., means

n{x e E: f(x) #g)}) =0.

Proposition 2.7 Let f be a nonnegative measurable function.

(1) For everya € (0, 00),
M({er:f(x)za})S;/fdu-
(2) We have
/fdu<oo:f<oo, na.e.
(3) We have
/fdM:0©f=0, wae.

(4) If g is another nonnegative measurable function,

f=g, ,ua.e.:>/fd,u=/gdu.
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Proof
(1) Set A, ={x € E: f(x) > a}. Then f > al,, and thus

/fdu > /alAa d = ap(Ay).

(2) Foreveryn > 1,set A, ={x € E: f(x) >n}and Ao ={x € E: f(x) =
oo}. By (1) we have (A,) < n! ffdu < oo for every n, and then

u(Ao) = () An) =n1_i)nolo¢M(An)§nlggoi/fdM=0.

n>1

(3) We already saw in Proposition 2.3 (2) that f = 0 a.e. implies f fdu = 0.
Conversely, assume that f fdw =0, and foreveryn > 1,set B, = {x € E :
fx)=n~"}. By (1),

M(Bn)fn/fdﬂ=0

and thus 1 (B,) = 0, which implies £ ({x : f(x) > 0}) = M( U B,,) —0.
n>1
(4) We use the notation f vV g = max(f, g) and f A g = min(f, g). Then f = g
a.e.implies f VvV g = f A g a.e., and thus

/(fvgxm=/(ng)du+/(ng—ng)du=f<ng>du,

where we applied (3)to fVg—fAg.Since [ fAagdu < [ fdu < [ fvgdpu,
and similarly for f g du, we conclude that

/fdu=/(fvg)du=/gdu- H

Theorem 2.8 (Fatou’s Lemma) Let (f,),eN be a sequence of nonnegative mea-
surable functions. Then,

/(liminff,,) dp < lim inf/ Sudu.
Proof We have

liminf f, = lim 4 (inf f,,)
k—o00 n>k
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and thus, by the monotone convergence theorem,

/(liminffn)du — lim 4 / ( inf fn>du.
k—o00 n>k
On the other hand, for every integer p > k,
g fn =< fp

which implies

/(}g fn)du < ;gfl;/fp du.

By taking a monotone limit as k 1 oo, we get

/ (liminf f,)du = lim 1 / ( gfn)dusklggo  int / fpdu
= liminf / fodp,

which completes the proof. O

One might naively think that an analog of Fatou’s lemma holds if the liminf is
replaced by the limsup, in the form

/(lim sup fr)dp > lim sup/ Sodu.

It is very easy to give examples showing that this does not hold: for instance, if
E = N and p is the counting measure, we can take f,(k) = 1if k > n and
fu(k) = 0if k < n, in such a way that lim sup f,, is the function identically equal to
0, but [ f, du = oo for every n.

We conclude this section with a simple observation, which is however of constant
use in probability theory. Recall from Definition 1.16 the notion of the pushforward
of a measure.

Proposition 2.9 Let (F, B) be a measurable space, and let ¢ : E —> F be
a measurable function. Let v be the pushforward of  under . Then, for any
nonnegative measurable function h on F, we have

fE h(e(x)) pu(dx) = fF h(y) v(dy). 22)

Proof If h = 1p with B € B, formula (2.2) holds by the definition of the
pushforward of a measure. The formula also holds when # is a nonnegative simple
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function by linearity, using Proposition 2.5 (2). Then we just have to write & as the
increasing limit of a sequence of nonnegative simple functions (Proposition 2.5 (1))
and to use the monotone convergence theorem twice. O

2.2 Integrable Functions

We will now discuss the integral of measurable functions of arbitrary sign. In
contrast with the case of nonnegative functions (Definition 2.2), we need to restrict
ourselves to a particular class, which will be the class of integrable functions.

If f: E — R is a measurable function, we denote the positive part and the
negative part of f by f+ = sup(f, 0) and f~ = sup(— f, 0) respectively. Note that
both f* and f~ are nonnegative measurable functions, and f = f™ — f~ and

Ifl=f"+r".

Definition 2.10 Let f : E — R be a measurable function. We say that f is
integrable with respect to p (or p-integrable, or simply integrable if there is no
ambiguity) if

/Ifldu < co.

In that case, we set

[ rauw=[ran-[ran

/fdu=/1Afdu-
A
Remarks

(1) If [|fldu < oo, we have [ fTdu < [|fldu < oo and similarly [ f~du <
00, which shows that the definition f f du makes sense (without the condition
J1fldp < oo, the definition might lead to [ fdu = oo — oco!). When f is
nonnegative, the definition of | f du is of course consistent with the previous
section.

(2) The reader may observe that we can give a sense to f f duw if (at least) one
of the two integrals [ fTdw and [ f~du is finite. For instance, we can define
[ fdu = —ooif [ ftdu < oo and [ f~du = oo. In this book, we will
not use this convention, and whenever we consider the integral of functions of
arbitrary sign we will assume that they are integrable.

If A € A, we write
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We let L!(E, A, 1) be the space of all u-integrable functions f : E —> R. We
will also use the notation Lﬂr (E, A, w) for the space of all nonnegative p-integrable
functions.

Properties

(a) Forevery f € LYE, A, p), | [ fdul < [1f]du.
(b) LY(E, A, p) is a linear space and f f f du is a linear form on this space.

() If f,ge LYE, A, p)and f < g, then [ fdu < [gdu.

(d) If f € LY(E, A, ) and g is a measurable function such that f = g, u ae.,
theng € LY(E, A, ) and [ fdu = [gdu.

(e) Under the assumptions of Proposition 2.9, let i : ' — R be measurable. Then
h is v-integrable if and only if & o ¢ is p-integrable, and then

/h(w(X))M(dX)=/ h(y) v(dy).
E F

Remark 1t is also true that, if f € EI(E,A, @) and g is nonnegative and
measurable, the property f < g implies [ fdu < [ gdu. Indeed, if [ gdu < oo
we apply (¢), and if | g dju = oo the result s trivial.

Proof

(a) We write
[ rau|=| [ rrau= [ rau| < [rraws [ran= [
(b) Let f € LI(E, A, u). Fora € R,
[ 1afian =1al [ 15100 < .
Ifa >0,

f (af)du = / (afy*du— f @f)du=a f frdu—a / fdu=a / fdu

and,ifa < 0,
f (af)du = / (af Yy — / (af) dp = (~a) / fdp+a / frdp=a / fau.

If f,g € LI(E, A, 1), the inequality | f + g| < | f| + |g| implies that f + g €
LY (E, A, 1) and moreover the fact that

fH+T—(f+e =f+eg=f"—f +gt—g
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implies
(f+e +f +g =(f+g +fM+sg"

Using the additivity property of the integral of nonnegative measurable func-
tions (Proposition 2.5 (2)), we get

/(f+g)+du+/f*du+fg*du = f(f+g)*du+/f+du+/g+du,

and therefore, since all integrals are finite,

/(f+g)+du—/(f+g)’du =/f*d/x—/f’dwr/g*du—/g’du,

which gives [(f +g)du = [ fdu+ [gdu.

(c) Wejustwrite [ gdu = [ fdu+ [(g— f)du.

(d) The equality f = g a.e. implies f™ = g™ and f~ = g~ a.e. It then suffices to
use Proposition 2.7 (4).

(e) This immediately follows from formula (2.2) applied to 2™ and h™. |

Remark By combining (c) and (d), we also get that, if f, g € LYE, A, ) and
f<gae,then [ fdu <[ fVvgdu=[gdu.

Extension to Complex-Valued Functions Let f : E —> C be a measurable
function (this is equivalent to saying that both the real part Re(f) of f and the
imaginary part Im(f) of f are measurable). We say that f is integrable (with respect
to ) if

f | fldp < 0.
In that case, we set
/ fdu= / Re(f)du +1 / Im( f)dpe.

We denote the set of all complex-valued integrable functions by E(%: (E, A, u). Prop-
erties (a), (b), (d) above are still valid if L' (E, A, u) is replaced by ﬁé:(E, A, 1)
(the easiest way to get (a) is to observe that

‘/fd,u‘: sup a~/fdu= sup /a-fdu,
aeC,lal=1 aeC,lal=1
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where a - z denotes the Euclidean scalar product on C identified with R?). Notice
that, in the complex analog of (b), ﬁé:(E , A, ) is viewed as a complex vector space.

Theorem 2.11 (Dominated Convergence Theorem) Let (f;,)n,eN be a sequence
in LY(E, A, ) (resp. in E(IC(E, A, 1)). We assume that:

(1) There exists a measurable function f with values in R (resp. with values in C)
such that

Ju(x) = f(x) wa.e.

(2) There exists a nonnegative measurable function g such that f gdu < oo and
foreveryn € N,

[fn(0)] < g(x) Wa.e.

Then f € LY(E, A, ) (resp. f € E(lc(E, A, w)), and we have
tim [ 7, du =/fdu
n—o0
and
lim / \fo — Fldu =0,
n—>oo

Proof We first assume that the following stronger assumptions hold:

(1) Foreveryx € E,

Ja(x) — f(x).

(2)’ There exists a nonnegative measurable function g such that f gdp < oo and,
foreveryn € N, forevery x € E,

[fn ()] = g(x).

The property f € L'(E, A, ) (resp. f € E}C(E, A, 1)) is then immediate since
|fl < gand [gdu < oco. Then, since |f — f,| < 2g and |f — f,| —> O as
n — oo, we can apply Fatou’s lemma to get

1iminf/(2g —1f = faDdp = /liminf(Zg —1f = faDdp = Z/gdu-



2.3 Integrals Depending on a Parameter 31

By the linearity of the integral of integrable functions, it follows that

2 [ gan—timsup [ 1f = fuldn =2 [ gau,
and therefore
timsap [ 17 = fuldu = 0.

sothat [ |f — fuldu —> 0 asn — oc. Finally, we have

‘/fd“—/fndﬂ‘fflf—fnldu.

In the general case where we only assume (1) and (2), we set
A={xeFE: f(x) — f(x)and|f,(x)| < g(x) forevery n € N}.
n—0o0

We note that A is a measurable set (use Lemma 1.15) and n(A¢) = 0. We can then
apply the first part of the proof to the functions

f) =140) fu(x),  f(x) = 1a(x) f(x).

We have f = f ae., f, = fy ae foreveryn € N, and thus [ f,du = [ fudu,

[fdu=[fduand [|fy — fldie = [ |fn — fldu. Furthermore properties (1)’
and (2)’ are satisfied by the functions f, and f. The desired results then follow from
the first part of the proof. O

2.3 Integrals Depending on a Parameter

We start with a continuity theorem for the integral of a function depending on a
parameter. We consider a metric space (U, d), which will be the parameter set.

Theorem 2.12 (Continuity of Integrals Depending on a Parameter) Ler f :
Ux E—> R(orC), and let uy € E. Assume that

(i) for everyu € U, the function x — f(u, x) is measurable;
(i) w(dx) a.e., the function u — f(u, x) is continuous at uo,
(iii) there exists a function g € EL(E, A, 1) such that, for everyu € U,

[ f(u,x)| < glx) w(dx) a.e.
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Then the function F(u) = f f(u, x)u(dx) is well defined for every u € U and is
continuous at uo.

Proof Assumption (iii) implies that the function x +— f(u, x) is integrable, for
every u € U, so that F(u) is well defined. Then let (u,),>1 be a sequence in U that
converges to ug. Assumption (ii) ensures that

g, x) = fuo,x), w(dx)ae.

Thanks to (iii), we can then apply the dominated convergence theorem, which gives

Tim / £, x) p(dx) = / £ (g, ) ().

Examples

(a) Let u be a diffuse measure on (R, B(R)) and ¢ € L£'(R, B(R), ). Then the
function F : R — R defined by

F(u) = /( lf/)(X)M(dX)=/1(—oo,u](X)</)(X)M(dX)

is continuous. Indeed, we can apply the theorem to f (u, x) = 1(—c0,u1(X)@(x),
taking ¢ = |¢| and observing that, for every fixed up € R and for every x €
R\{uo}, the function u + f(u, x) is continuous at ug (and u({ug}) = 0 since
u is diffuse).

(b) Fourier transform. Let A denote Lebesgue measure on R, whose existence will
be established in the next chapter. If ¢ € L£!(R, B(R), &), the function ¢ :
R — C defined by

Pu) = / " o (x) A(dx)

is continuous on R. The function ¢ is called the Fourier transform of ¢. In
probability theory, we will also need to consider the Fourier transform of finite
measures. If u is a finite measure on R, its Fourier transform is defined by

au) := /ei”xu(dx), ueR.

Again the dominated convergence theorem implies that 1 is continuous (and
bounded) on R.
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(c) Convolution. Let ¢ € LY (R, B(R), 1), and let h : R —> R be a bounded
continuous function. Then the function /4 * ¢ defined on R by

h*o(u):= /h(u —x) @(x) A(dx)

is continuous (and bounded).

We will now state a theorem of differentiability of integrals depending on a
parameter. We let I be an open interval of R.

Theorem 2.13 (Differentiation Under the Integral Sign) We consider a function
f:I xE— R Letug € I. Suppose that

(i) for everyu € I, the function x — f(u, x) belongs to L' (E, A, u);
(i) w(dx) a.e., the function u — f(u, x) is differentiable at uy and its derivative
is denoted by

af

9 (uo, x) ;

(iii) there exists a function g € EL(E, A, 1) such that, for everyu € I,

Lf (u, x) — f(uo, x)| < g(x)|u —uol, p(dx) a.e.

Then the function F(u) = f f(u, x)u(dx) is differentiable at ug, and its derivative
is

a
F'(uo) =/ a];(uo,X)M(dX)

Remarks

(1) The derivative 3{4 (ug, x) is defined in (ii) only for x belonging to the comple-
ment of a measurable set H of p-measure zero. We can extend its definition
to every x € E by assigning the value 0 when x belongs to H. The function
X ‘31’; (up, x) is then measurable (on the complement of H it is the pointwise
limit of the functions ¢, introduced in the proof below, so that we can use
Lemma 1.15) and even integrable thanks to (iii). This shows that the formula
for F’(uo) makes sense.

(2) Itis easy to write an analog of Theorem 2.13 for complex-valued functions: just
deal separately with the real and the imaginary part.
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Proof Let (u,)n>1 be a sequence in I\{uo} that converges to u, and let

f(u?’lv-x) - f(l/l(), )C)

n(x) =
Up — UQ

for every x € E. Thanks to (ii), ¢,(x) converges to gi (uo, x), u(dx) ae.
Furthermore (iii) allows us to apply the dominated convergence theorem and to get

Fun) — Fuo) _

d
lim —nli{go/wn(x)/t(dx)=/ aj;(uo,x)lt(dx)-

n—o00 Uy — UuQ

In many applications, assumptions (ii) and (iii) hold in the stronger form:

(i)’ wu(dx) a.e. the function u —> f(u, x) is differentiable on I;
(iii)’ there exists a function g € Eﬂr (E, A, 1) such that, u(dx) a.e.,

Yuel, ‘gj;(u,x)‘ < g(x).

(Notice that (iii)’=>(iii) thanks to the mean value theorem.) Under the assumptions
(1),3i1)’,(ii1)’, F is differentiable on I. Exercise 2.14 below shows that the more
general statement of the theorem is sometimes necessary.

Examples

(a) Letg € L1(R, B(R), 1) be such that

/ [xp(x)| A(dx) < oo.

Then the Fourier transform ¢(u) is differentiable on R, and
o'(u) = i/x " @(x) A(dx).

(b) Letg € L'(R, B(R), 1), and let & : R — R be continuously differentiable,
and assume that & and /' are both bounded. Then the convolution % * ¢ is
differentiable on R, and

(hx@) =h *¢.

This argument can be iterated. For instance, if % is infinitely differentiable with
compact support, & *x ¢ is also infinitely differentiable.
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2.4 Exercises

Exercise 2.1 Let (E, A, 1) be a measure space, and let ( f;;),eN be a sequence of
integrable functions on E. Assume that

| ful dp < o0
>

(0.¢]
Verify that the series Z fu(x) is absolutely convergent for n ae. x € E. If

n=1
F(x) denotes the sum of this series (and F(x) = O if the series is not absolutely
convergent), prove that the function F is integrable and

/qu=§/fndu-

Exercise 2.2 Let (E, A, 1) be a measure space, and let (A,),cN be a sequence in
A. Also let f : E —> R be an integrable function. Assume that

tim [ IL, ~ f1de =0
n—o0
Prove that there exists A € A such that f = 14, u a.e.

Exercise 2.3 Let (E, A, 1) be a measure space, and let (A,),cN be a sequence in
A. Show that the condition

> (A < oo.

n=1
implies p(limsup A,) = 0.

Application Let A denote Lebesgue measure on R. Let (a,),en be a sequence of
real numbers, and let (o, ),en be a sequence of positive numbers. Show that the
condition

Z\/an < 00

neN
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implies

Op
Z <00, A(dx) ae.

|x — anl
Hint: Consider the sets A, = {x e R: [x —a,| < /o).

Exercise 2.4 Let (E, A, ) be a measure space, and let f : £ —> R be a
measurable function. Show that

/|f|du<oo — Zz"u({er:2"5|f(x)| < 2" < 0.

nez

Assume that  is finite. Show that

/Ifldu<oo = Y ulx e E:|f(x)|=n)) <oo.

n=1

Exercise 2.5 Let 1 be a measure on (R, B(R)), and f € L' (R, B(R), 1t). Assume
that f[a b] fdu = 0 for every reals a < b. Show that f = 0, u a.e. (Hint: Use the

monotone class theorem to verify that f g Jdu = 0forevery B € B(R).)

Exercise 2.6 Compute

n
lim (1 4 x)" e 2% dy.
n

n—>oo 0
Let @ € R. Prove that the limit
n

lim (1 _ x)"x“—l dx
0

n—oo n
exists in [0, oo] and is finite if and only if & > O.

Exercise 2.7 Let (E, A, 1) be a measure space. Prove that u is o-finite if and only
if there exists a measurable function f on E such that [ fdu < oo and f(x) > 0
forevery x € E.

Exercise 2.8 (Scheffé’s Lemma) Let (E, A, 1) be a measure space, and let

(fn)nen and f be nonnegative measurable functions on E. Assume that f fdu <
oo, and that f,(x) — f(x) asn — oo, u a.e. Show that the condition

/fndu njgo/fdu
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implies that
/|fn ~ fldu — 0.

Exercise 2.9 Let (E, A, 1) be a measure space, and let f : E —> R be an
integrable function.

(1) Show that

nlirgof |F1fizn) dpe = 0,

where we write {| f| > n} ={x € E : |f(x)| > n}.
(2) Show that, for every ¢ > 0, there exists § > 0 such that, for every A € A,

/L(A)<5:/|f|du<8.
A

(3) Suppose that (E, A, n) = (R, B(R), A), where X is Lebesgue measure. Show
that the function F defined by

dr ifx >0,
Fixy = | o 32 il =
~ Jieqp f dx ifx <0,

is uniformly continuous on R.

Exercise 2.10 Let (E, A, 1) be a measure space, and let f € E}C(E, A, ). Show
that, if | [ fdu| = [ | f|du, there exists a complex number a € C such that |a| = 1

and f =alf]|, u a.e.

Exercise 2.11 Consider the measure space (R, B(R), ), where A is Lebesgue
measure. Let f : R — R be an integrable function. Show that, for every o > 0,

lim n7%f(nx) =0, A(dx) a.e.
n—>oo
(Hint: Consider, for every n > 0 and n > 1, the set
Ayn={x eR:n"% f(nx)| > n},

and use Exercise 2.3.)
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Exercise 2.12 (Convergence in Measure) Let (E, .A) be a measurable space, and
let u be a finite measure on E. If (f;),en and f are real measurable functions on
E, we say that f,, converges in p-measure to f if, for every ¢ > 0,

n(lx € E: 1 fu() = f0)] > ) — 0.

(1) Show that if f,(x) — f(x), u(dx) a.e., then f, converges in p-measure to
f(x). Give an example (using Lebesgue measure) showing that the converse is
not true in general.

(2) Using Exercise 2.3, show that, if the sequence f,, converges in p-measure to f,
we can find a subsequence (fy, )ken such that f,, (x) — f(x) as k — oo,
u(dx) a.e.

(3) Show that (still under our assumption that u is finite) the conclusion of the
dominated convergence theorem remains valid if we replace the condition

S =2 f(x), wp(dx)ae.

by the weaker assumption f,, converges in y-measure to f.

Exercise 2.13 Let ¢ : [0,1] — R be integrable with respect to Lebesgue
measure.

(1) Foreveryt > 0, set

1
F(t) = 2 dx.
0 /O Jow? + rdx

Prove that the function F is continuous on [0, co) and differentiable on (0, c0).
Give a necessary and sufficient condition (on ¢) for F to be differentiable at 0.
(2) Foreveryt € R, set

1
G(l)=/0 lo(x) — 1] dx.

Prove that G is continuous on R. For a fixed #p € R, give a necessary and
sufficient condition for G to be differentiable at #q.

Exercise 2.14 Let u be a diffuse measure on (R, B(R)), and let ¢ €
LY(R, B(R), ). Assume that

/ lx@(x)] u(dx) < oo,
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and, for every u € R, set

Fu) = /R(u =0 () p(dx).

Show that F is differentiable on R, and its derivative is

F'(u) =f( lw(X)M(dX)-

39



Chapter 3 )
Construction of Measures Check for

While the preceding chapter dealt with the Lebesgue integral with respect to a given
measure [ on a measurable space, we are now interested in constructing certain
measures of particular interest. Our main goal is to prove the existence of Lebesgue
measure on R or on R?, but we provide tools that could be used as well to construct
more general measures.

The first section introduces the notion of an outer measure. An outer measure
satisfies weaker properties than a measure, but it turns out that it is possible from
an outer measure to construct a measure defined on an appropriate o-field. This
approach leads to a relatively simple construction of Lebesgue measure on R or on
R?. We discuss several properties of Lebesgue measure, as well as its connections
with the Riemann integral. We also provide an example of a non-measurable subset
of R, which illustrates the fact that Lebesgue measure could not be defined on
all subsets of R. Another application of outer measures is the construction (and
characterization) of all finite measures on R, leading to the so-called Stieltjes
integral. Although this chapter focusses on measures on Euclidean spaces, we give
several statements that are valid in a more general setting. In the last section, we
state without proof the Riesz-Markov-Kakutani representation theorem, which is a
cornerstone of the functional-analytic approach to measure theory.

3.1 Outer Measures

Recall our notation P(E) for the set of all subsets of a set E.

Definition 3.1 Let E be a set. A mapping u* : P(E) —> [0, oo] is called an outer
measure (or exterior measure) if

(i) u* (@) =0;
(i) p*isincreasing: A C B = u*(A) < u*(B);
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(iii) w* is o-subadditive, meaning that, for every sequence (Ay)ien in P(E),

M*( U Ak) < ZM*(Ak).

keN keN

The properties of an outer measure are less stringent than those of a measure
(o -additivity is replaced by o-subadditivity). On the other hand, an outer measure
is defined on every subset of E, whereas a measure is defined only on elements of a
o-fieldon E.

We will later provide examples of interesting outer measures. Our goal in this
section is to show how, starting from an outer measure u*, one can construct a
measure on a certain o-field M (u*) which depends on p*. In the remaining part of
this section, we fix an outer measure ™.

Definition 3.2 A subset B of E is said to be u*-measurable if, for every subset A
of E, we have
wH(A) = n* (AN B) + u* (AN BY).

We let M(u*) C P(E) denote the set of all u*-measurable sets.

Remark The inequality u*(A) < u*(A N B) + u*(A N B€) always holds by o-
subadditivity. To verify that a set B is u*-measurable, we have to check the reverse
inequality.

Theorem 3.3

(1) M(u*) is a o-field, which contains all subsets B of E such that u*(B) = 0.
(ii) The restriction of u* to M(u*) is a measure.

Proof
(1) Write M = M (u*) to simplify notation. If ©*(B) = 0, the inequality

w*(A) = W (AN BY) = u*(AN B) + u* (AN B

immediately shows that B € M.

Then it is obvious that @ € M and that B € M implies B¢ € M. To
complete the proof of (i), it remains to verify that M is closed under countable
unions. We start by proving that M is closed under finite unions. Let By, By €
M. Then, for every A € P(E), the fact that B; € M implies that

w*(AN (B UBy)) = pu*(AN (B UBy) N By)+ w* (AN (B UBy) N BY)
= u*(AN B1) + u*(AN By N BY).
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Hence, using successively the properties B, € M and B} € M,

(AN (B1 U B2) + p* (AN (B U By)°)
= p*(AN By) + (AN B N By) + (AN B N BS)
= W*(AN By) + u*(AN BY)
= u*(A),

which shows that By U B, € M. Since M is closed under finite unions and
under the replacement of a set by its complement, M is closed under finite
intersections. Consequently, if B, B’ € M, then B'\B = B’ N B € M.

Thanks to the last remark, the proof of (i) will be complete if we can
prove that, for any sequence (B )ken of disjoint sets belonging to M, we have
Uken Bx € M. To this end, we show by induction that, for every integerm € N
and every subset A of E,

HwHA) =iu*(AmBk)+u*(Am(ﬁB,§)). (3.1
k=1

k=1

When m = 1, this is just the property By € M. To go from step m to step
m + 1, we use the property B,,+1 € M and then the fact that the sets By are
disjoint (so that By, +1 C By for 1 < k < m), to get

(4 ((ya8)) = (a0 () 80) ) (a0 (1) )
k=1 k=1 k=1
= W(AD By + (A0 (mﬁ B;))
k=1

and combining this equality with the induction hypothesis we get the desired
result at step m 4 1. This completes the proof of (3.1).
It follows from (3.1) that

m

WA = Y AN By +pr(an N 5;))

k=1 k=1
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and, letting m tend to oo,

o]

WA 2 D AN B + (AN (ﬁBk)) (3.2)

k=1 =1

= (4N (D Be)) +wr(an <QB'$))

k=1

=~

by o-subadditivity. Recalling the remark after Definition 3.2, we conclude that

oo
U By € M, and this completes the proof of (i).
k=1
(i) Let u denote the restriction of pu* to M. We already know that u(2) = 0.
Let (Bg)reN be a sequence of disjoint elements of M. We can apply (3.2) with
o

A= U By It follows that
k=1

u(@ Br) = 5 B0,
k=1 k=1

Since the reverse inequality holds by o-subadditivity, we have obtained the o-
additivity of the restriction of pu* to M. This completes the proof. O

3.2 Lebesgue Measure

For every subset A of R, we set

AE(A) = infi S i —ap:Ac Y@, b,-)}.

ieN ieN
The infimum is over all countable covers of A by open intervals (a;, b;), i € N (it

is trivial that such covers exist). Note that the infimum makes sense as a number in
[0, oo]: the value oo may occur if A is unbounded.

Theorem 3.4

(i) A* is an outer measure on R.
(i) The o-field M(\*) contains B(R).
(iii) For every reals a < b, A*([a, b]) = A*((a, b)) = b — a.
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The restriction of A* to B(R) is a positive measure on (R, B(R)) called Lebesgue
measure on R. It will be denoted by A. As a consequence of the monotone class
theorem (see the end of Chapter 1), this is the unique measure on B(R) that satisfies
the property A([a, b]) = b — a for every compact interval [a, b].

Proof

@

(i)

It is immediate that A*(&) = 0 and A*(A) < A*(B) if A C B. It remains to
establish subadditivity. To this end, consider a sequence (A,)neN Of subsets of
R. We can assume that A*(A,) < oo for every n (otherwise there is nothing
to prove). Let ¢ > 0. For every fixed n € N, we can find a sequence of open
intervals (al.(”), bl.(")), i € N, such that

An C U(al(n)’ bl(n))
ieN

and

&
S 6" —a™) < 1A + o
ieN

Then we just have to notice that the collection of all intervals (al.("), bl.(")) for
n € Nandi € N forms a countable cover of Un N An, and thus

F(Uan) =230 —a™) = 3w A +e.

neN neNieN neN

The desired result follows since ¢ was arbitrary.

Since M(A*) is a o-field, it is enough to verify that it contains a class that
generates the Borel o-field, and, for instance, we can consider the class of all
intervals (—oo, «], for ¢ € R. So fix @ € R and set B = (—o00, «]. We have to
check that, for every subset A of R,

A*(A) > A*(AN B) + A*(A N BO).

Let ((ai, bi))ien be a cover of A, and & > 0. The intervals (a; A o, (b; A o) +
£27") cover A N B, and the intervals (a; V «, b; vV «) cover A N B¢. Hence

M(ANB) <Y ((bi Aa) — (@i Aa)) +é,
ieN

MANBY) <) ((bi V) = (@ V ).
ieN
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(iii)
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By summing these two inequalities, we get

WANB)+A(ANBY) <) (bi —a) +&.
ieN

Since ¢ was arbitrary, we get

MANB)+ A (ANBY) < ) (bi —ap).
ieN

and since A*(A) is defined as the infimum of the sums in the right-hand side
over all covers of A, we obtain the desired inequality.
From the definition, it is immediate that

A*([a,b]) <b—a.

To get the reverse inequality, assume that

la, b] C | (@i, bo).

ieN

By compactness, we can find a sufficiently large integer N such that

N
[a,b] C | (@i, bi).

i=1

An elementary argument left to the reader then shows that this implies

N 00
b—a<y (hi—a) <y (b —a).
i=1 i=1

This gives the desired inequality b—a < A*([a, b]). Finally, it is easy to see that
A*((a, b)) = A*([a, b]) (for instance by observing that A*({a}) = A*({b}) =
0). |

Extension in Higher Dimension
We now turn to the construction of Lebesgue measure on R?, when d > 2. An open
box (resp. a closed box) is a subset P of R4 of the form

P =

(a1,b1) x (a2, b2) x -+ x (ag,bg) (resp. P =lay, b1] x laz, b2] x -+ - x [ag, bg])
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where a; < by, ...,aq < by. The volume of P is by definition
d
vol(P) = [ b; — a).
j=1

We then define, for every subset A of Rd,

AE(A) = inf{ Y volpy:Ac | P,-}.
ieN ieN
where the infimum is over all covers of A by a countable collection (P;);cN of open

boxes.
We have the following generalization of Theorem 3.4.

Theorem 3.5

(i) A* is an outer measure on RY.
(ii) The o-field M(1*) contains B(R?).
(iii) For every (open or closed) box P, A*(P) = vol(P).

The restriction of A* to B(R?) is Lebesgue measure on R?, and will again be
denoted by X, or sometimes by A, if there is a risk of confusion.

Proof The proof of (i) is exactly the same as in the case d = 1. For (ii), it is enough
to prove that, if A C R is a set of the form

A=Rx - xRx(—00,a]l x Rx--- xR,

with a € R, then A € M(L*¥) (it is easy to verify that sets of this form generate
B (Rd )). The proof is then very similar to the case d = 1, and we omit the details.
Finally, for (iii), the point is to verify that, if P is a closed box and if

n
P C U P;
i=1
where the P;’s are open boxes, then

vol(P) < ZVO](P,-).

i=1

We leave this as an exercise for the reader (Hint: The volume of a box can be
obtained as the limit as n — oo of 279" times the number of cubes of the form
[k127", (k1 + 127" x - - - X [kg27", (kg + 1)27"], k; € Z, that intersect this box).

O



48 3 Construction of Measures

Remark Our study of product measures in Chapter 5 below will give another way of
constructing Lebesgue measure on R, from the special case of Lebesgue measure
on R.

Notation We (almost always) write

/f(x)dx=/ J(x) A(dx)
R4 R4

for the integral of f with respect to Lebesgue measure (provided that this integral is
well defined). When d = 1, for a < b, we also write

b
f fydy = / £ () A(dx).
a [a,b]

A natural question is whether M (1*) is much larger than the o-field B(R). We
will see that in a certain sense these two o -fields are not much different. We start
with a preliminary proposition, which we state in a general setting since the proof
is not more difficult that in the case of R.

Proposition 3.6 Ler (E, A, i) be a measure space. The class of ju-negligible sets
is defined as

={AeP(E):3Be A, A C Band u(B) = 0}.

The completed o-field of A with respect to  is defined as the smallest o -field that
contains both A and N. This o-field is denoted by A. Then there exists a unique
measure on (E, A) whose restriction to A is [L.

Proof We first observe that a more explicit description of A can be given by saying
that A = B, where

B={AeP(E):3B,B € A,BC AC B and u(B'\B) = 0}.

In fact, it is straightforward to verify that B is a o-field (we omit the details). It is
then clear that A C B and N C B, which implies that AcCB. Finally, if A € B,
we choose B and B’ as in the definition of B, and we observe that A = B U (A\ B),
with B € Aand A\B € N (because A\B C B’\B). The property B C A follows.
Once we have checked that A = B, we extend u to A in the following way. If
A € A= B, andif B and B’ are as in the definition of B, we set u(A) = u(B) =
w(B’). This does not depend on the choice of B and B’: if B and B’ provide another
possible choice, we have both w(B) < w(B’) and M(B ) > wu(B) which forces
w(B) = w(B') = u(B) = w(B'). Finally it is easy to check that the extension of
w to A is a measure. Indeed, if we consider a sequence (Ap),en of disjoint sets in
A, then, for every n € N, we can choose B, € A, such that B, C A, and A,\By, is



3.2 Lebesgue Measure 49

n-negligible, and we have

Do) = 3o () = w(UB) =n(Uan),

neN neN

where the last equality holds because |, .y An\ Upeny Bn € Upen(An\Bn) is p-
negligible. O

Remark Let f and g be two real functions defined on E. Assume that g is A-
measurable and that f = g, i a.e. (by definition, this only means that {x € E :
f(x) # g(x)} is u-negligible, which makes sense even if we do not assume that
f is measurable). Then f is A-measurable. Indeed, we know that there exists a
set C € A such that u(C) = 0 and f(x) = g(x) if x ¢ C. Then, for any Borel
subset H of R, we have g~ (H)\C C f~'(H) c g~'(H) U C, and this implies
f~Y(H) € A, as in the preceding proof.

Proposition 3.7 The o-field M(A*) is equal to the completed o-field B(RY) of
B(R?) with respect to Lebesgue measure on R?.

Proof The fact that B(RY) ¢ M (1*) is immediate. Indeed, if A is a A-negligible
subset of R?, there exists B € B(R?) such that A ¢ B and A(B) = 0. Then
A*(A) < A*(B) = A(B) = 0, and by Theorem 3.3 (i), this implies that A € M(A*).

Conversely, let A € M(1*). We aim to show that A € B(R?). Without loss of
generality, we may assume that A C (—K, K)¢ for some K > 0 (otherwise, we
write A as the increasing union of the sets A N (—n, n)?). Then A*(A) < oo, and
thus, for every n > 1, we can find a countable collection (P/");cn of open boxes
such that

1
Aclrr. D " vol(P!) < AF(A) + .
ieN ieN

We may assume that the boxes Pl." are contained in (—K, K)¢ (the intersection of
an open box with (—K, K)? is again an open box). Set

BnZUPIn’ BzﬂBn‘

ieN neN

Then B € B (Rd ) and A C B, and furthermore, for every n,

n * 1
A(B) < A(By) < Zvol(P,» A CVE

1

which implies A(B) < A*(A) and then A(B) = A*(A) since we have also
A(B) = A*(B) > A*(A). If we replace A by (—K, K)?\A, the same argument
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gives B € B(RY), with B C (—K,K)%, such that (—K,K)\A C B and
A*(—K, K)'\A) = AMB). If B = (—K, K)?\B, we have then B’ C A and
AMB") = A*(A) = A(B). Finally we have found two Borel sets B and B’ such
that B C A C B and A(B\B') = 0, so that we get A € B(R?). |

Theorem 3.8 Lebesgue measure on R? is invariant under the translations: for
every A € B(R?Y) and every x € R?, we have L(x + A) = A(A).

Conversely, if w is a measure on (R?, B(R?)) which is finite on bounded sets and
invariant under translations, there exists a constant ¢ > 0 such that 1 = c.

Proof For x € RY, write o, for the translation o, (y) = y — x for y € R?. The
pushforward o, (1) satisfies

VA € B(RY), o,(M)(A) = A(o, ' (A) = A(x + A).

The equality o (1) (A) = A(A) is trivial for any box A (since A and x + A are boxes
with the same volume). Thanks to an application of Corollary 1.19 to the class of
open boxes, it follows that o, (A) = A.

Conversely, let  be a measure on (R?, B(R%)) which is invariant under the
translations and takes finite values on boxes. Set ¢ = ([0, 1)d). Since [0, 1)¢ is
the disjoint union of n? boxes which are translations of [0, rll)d, it follows that, for
everyn > 1,

c

1, _
uo. H=",.

Then, let ay, ..., aq > 0, and denote the integer part of a real x by |x|. Writing

d d d
[naj | . lnaj|+1
[To. = " c[Two.ap < [Too, =7 )

j=1 j=1 j=1

we get

d
(Tinan |, = (
j=1

|| *
—
S
IS}
~.
| S—
Nl
IA
=
—~
~.
Il U
(=}
Q
~
N
~—~
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and, using the invariance of ¢ under translations, we find that i and ¢ A coincide on
sets of the form

d
[ J1a). 5.
j=1

Again Corollary 1.19 allows us to conclude that © = c X. O

Remark For every a € R\{0}, the pushforward of Lebesgue measure A on R? under
the mapping x — ax is |a|~?A. This is an immediate application of Theorem 3.8
(or of Corollary 1.19).

Proposition 3.9 Lebesgue measure on RY is regular, in the sense that, for every
A € B(RY), we have

MA) = inf{A(U) : U open set, A C U}
= sup{A(F) : F compact set, F C A}.

Proof The quantity inf{A(U) : U open set, A C U} is always greater than or equal
to A(A). To get the reverse inequality, we may assume that A(A) < oo. Then, by
the definition of A(A) = A*(A), we can, for every ¢ > 0, find a cover of A by open
boxes P;, i € N, such that Y, .y A(P;) < A(A) + ¢. The open set U = | ;o Pi
contains A, and A(U) < D", .y A(P;) < A(A)+e¢, which gives the desired inequality
since & was arbitrary.

To get the second equality of the proposition, we may assume that A is contained
in a compact set C (otherwise, write A(A) = lim 1t A(A N [—n, n]%)). For every
e > 0, the first part of the proof allows us to find an open set U containing C\ A and
such that A(U) < A(C\A) +¢. Butthen F = C\U is a compact set contained in A,
and

MF) = MC) = A(U) = A(C) = (A(C\A) +¢) = A(A) —¢,

which gives the second equality. O

The preceding proposition is by no means special to Lebesgue measure, and in
fact it holds in much greater generality for measures on metric spaces. We content
ourselves with a statement about finite measures.

Proposition 3.10 Let (E, d) be a metric space, and let |1 be a finite measure on
(E, B(E)). Then, for every A € B(E),
w(A) = inf{u(U) : U open set, A C U}
= sup{u(F) : F closed set, F C A}.
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Proof Let O be the class of all open subsets of E, and let C be the class of all sets
A € B(E) that satisfy the property of the proposition. Since the Borel o-field is (by
definition) generated by O, it suffices to prove that O C C and that C is a o-field.

So suppose that A € O. Then the first equality in the proposition is trivial. As for
the second one, we observe that, for every n > 1, the set

. 1
Fo={x€E:dx,A°) > }
n

is contained in A and is closed (because the function x — d(x, A¢) = inf{d(x, y) :
y € A€} is continuous). On the other hand, A is the increasing union of the sequence
(F)n>1, which implies

u(A) = lim 1 p(Fy).

This gives the second equality. We have thus proved that O C C.

It remains to show that C is a o-field. Plainly, @ € C and, because complements
of open sets are closed, one immediately sees that A € C implies A° € C (here
we also use the fact that u is finite). We still have to show that C is closed
under countable unions. Let (A,),cN be a sequence in C. We need to verify that

Upen An € C.
Let ¢ > 0. For every n, we can find an open set U, containing A, such that

w(U,) < w(A,) + 27", and therefore

p(UuAUan) = Y nWna <e.

neN neN neN

Since |,y Un is open, this gives the first of the two desired equalities for |, .y An-
Then, let N be an integer large enough so that

(Un)=u(Ua) -

neN

Foreveryn € {1, ..., N}, we can find a closed set F;, C A, such that u(A,\F,) <
£27"". Hence

is closed and

N

(U an\VF) = CJ(An\Fn)) B SITIRVAP

n=1 n=1 n=1
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It follows that

(U =s((Ua(Um)) +((Uar) <2
neN neN n=1 n=1
and we conclude that ( J, .y A, € C, which completes the proof. O

3.3 Relation with Riemann Integrals

In this section, we briefly discuss the relation between the Lebesgue integral that
we constructed in Chapter 2 and the (older) Riemann integral. Roughly speaking,
the Riemann integral on the real line involves approximating the function in
consideration by step functions, which are constant on intervals, whereas we saw in
the previous chapter that the definition of the Lebesgue integral involves the more
general simple functions. The Lebesgue integral is in fact much more powerful than
the Riemann integral, and, in particular, the convergence theorems that we obtained
in Chapter 2 would be difficult to derive, even for continuous functions defined on
a compact interval of the real line, if one relied only on the theory of the Riemann
integral.

Let us briefly present the construction of the Riemann integral. Throughout this
section, we consider functions defined on a fixed interval [a, b] of R, witha < b. A
real function 4 defined on [a, b] is called a step function if there exist a subdivision
a=xg<x1 <---<xy = bofthe interval [a, b], and reals y1, ..., yy such that,
foreveryi € {1,..., N}, we have h(x) = y; for every x € (y;—1, yi). We then set

N
I(h) = yilxi —xi-1).
i=1

Clearly any step function 4 is Borel measurable and integrable with respect to
Lebesgue measure, and I (h) = f[a’ bl h(x) dx (in particular, I (h) does not depend
on the subdivision chosen to represent /). If & and 4’ are two step functions and
h < I, one easily verifies that I (h) < I(h').

Let Step([a, b]) denotes the set of all step functions on [a, b]. A bounded function
f :la, b] — R s called Riemann-integrable if

sup I(h) = inf 1(h)
heStep(la,bl), h<f heStep(la,b]), h> f

and then this value is called the Riemann integral of f and denoted by I (f) (if f is
a step function, this is consistent with the preceding definition).
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In the next statement, B([a, b]) stands for the completed o -field of B([a, b]) with
respect to Lebesgue measure (cf. Proposition 3.6).

Proposition 3.11 Ler f be a Riemann-integrable function on [a,b]. Then f is
measurable from ([a, b], B([a, b])) into (R, B(R)), and

1(f) = f(x) dx.

[a,b]

Proof By definition, there exists a sequence (h,,),en of step functions on [a, b] such
thath, > fand I(h,) | I(f)asn — oo.Uptoreplacing h, par hy Ao A+ - Ahy,
we can assume that the sequence (h,),eN is decreasing. We then set

hoo =1im | hy > f.

Similarly, we can find an increasing sequence (hy) of step functions on [a, b] such
that h, < f and I(h,) 1 I(f), and we set

oo =lim 4 hy < .

The functions /o and ﬁoo are bounded and Borel measurable. By the dominated
convergence theorem, we have

/ fioo(x)dx = lim | By (x)dx = lim | I(hy) = 1(f),
[a,b] [a,b]

/ hioo (x)dx = lim 1 i (x)dx = lim 4 I (hy) = 1(f).
[a,b] [a,b]

Hence
/ (hoo(x) — ﬁoo(x))dx =0.
[a,b]

Since iog > ho, this implies hoo = hoo, A a.e. (Proposition 2.7 (3)). Since /oo >
f = hoo, it follows that f = hso, A a.e., and from the remark after Proposition 3.6
we get that f is B([a, b])-measurable. Finally, since f = hso, A a.e., we have

S £ dx = [, hoo(x) dx = 1(f). O

Remark 1t is worth emphasizing that, even for functions defined on a compact
interval of R, the Lebesgue integral is much more general than the Riemann integral
(see Exercise 3.5 below for a characterization of Riemann-integrable functions). A
simple example is the indicator function 1gnyo, 1}, which is not Riemann-integrable
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but is obviously integrable with respect to Lebesgue measure. Furthermore, as we
already mentioned, the convergence theorems proved in Chapter 2 are very powerful
tools that are not available in the theory of the Riemann integral.

3.4 A Subset of R Which Is Not Measurable

It is not so easy to give examples of subsets of R that are not Borel measurable. In
this section, we provide such an example, whose construction strongly relies on the
axiom of choice. Consider the quotient space R/Q of equivalence classes of real
numbers modulo rationals (in other words, equivalence classes for the equivalence
relation on R defined by setting x ~ y if and only if x —y € Q). Foreacha € R/Q,
choose a representative x, of a (here we rely on the axiom of choice, which allows
us to make such choices). Clearly we can assume that x, € [0, 1] (replace x, by
Xq — Lxq]). Set

F={x,; aeR/Q}C[O0,]1].

Then F is not a Borel set, and is not even measurable with respect to the completed
o-field B(R).

To verify this, let us suppose that F is Borel measurable (the argument also works
if we assume that F is B(IR)-measurable) and show that this leads to a contradiction.
We have

Rc [ J@+P
q€Q

because, for any real x, F' contains a representative y of the equivalence class of x
in R/Q, which means that x = g + y for some rational g. It follows that A(F) >
0, because otherwise R would be contained in a countable union of sets of zero
Lebesgue measure.

However, the sets ¢ + F, g € Q are disjoint (if, given two rationals ¢, ¢’, we
have ¢ + x, = ¢ + x, for some a, @’ € R/Q, it follows that x, —x, = ¢’ —q € Q
and therefore a = a’ and g = ¢’). From the fact that

U @+F clo.2

q€QNI0,1]

we deduce that

Y Mg+F)<2

q€QNI0,1]

and necessarily A(F) = 0, which gives the announced contradiction.
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Remark Other ways of constructing non-measurable sets are presented in Exer-
cise 3.6. All these examples involve making uncountably many choices (in the
above example, choosing a representative in each equivalence class of R/Q). As
an informal general principle, all subsets of R or of R? that are obtained by a
“constructive” method will be measurable.

3.5 Finite Measures on R and the Stieltjes Integral

The next theorem provides a description of all finite measures on (R, B(R)). The
statement could be extended to measures that are only finite on compact subsets of
R (see the discussion at the end of this section) but for the sake of simplicity we
restrict our attention to finite measures.

Theorem 3.12
(1) Let u be a finite measure on (R, B(R)). For every x € R, let

Fu(x) = (=00, x]).

The function F,, is increasing, bounded, right-continuous and such that
Fy(—0o0) = 0 (where F,(—00) obviously stands for the limit of F,(x) as
X — —00).

(i) Conversely, consider a function F : R — Ry which is increasing, bounded,
right-continuous and such that F (—oo) = 0. Then, there exists a unique finite
measure (1 on (R, B(R)) such that F = F),.

Proof

(i) Itis straightforward to verify that F), satisfies the stated properties. For instance,
if (xy)nen 1S a real sequence decreasing to x, (—oo, x] is the decreasing
intersection of the sequence (—oo, x,], and thus

Fun) = p((=00, %a1) — (=00, x]) = Fu(x).

Similarly, if x,, | —oo as n — o0, the decreasing intersection of the sequence
(—00, x,] is @, which implies F, (x,) — 0.
(i) The uniqueness of u is a consequence of Corollary 1.19, since the class C =
{(—o0, x]; x € R} is closed under finite intersections and generates B(R).
To show existence, we set, for every A C R,

W) =inf | 3P = Fa) : 4 < | b1},

ieN ieN
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(Here it is more convenient to cover A by left-open and right-closed intervals,
in contrast with the open intervals we used for Lebesgue measure.) Arguments
very similar to those we used in the proof of Theorem 3.4 in the case of
Lebesgue measure show that u* is an outer measure and the intervals (—oo, o]
are in M (u*) (the latter property is even easier here). It follows that the o-
field M (u*) contains B(R), and the restriction of u* to B(R) is a measure on
(R, B(R)), which we denote by p. Clearly, u is a finite measure.

To complete the proof, we have to verify that u((—oo, x]) = F(x) for every
x € R. To this end, it suffices to check that i ((a, b]) = F(b) — F(a) for every
a < b (thenlet a — —o0). The bound

n((a, b)) = F(b) — F(a)

is immediate from the construction of ™.

To get the reverse inequality, let ((x;, y;])ien be a countable cover of (a, b],
andlete € (0,b — a). Forevery i € N, we can find y; > y; such that F(y]) <
F(y;) 4+ £27%. By compactness, we can find N, large enough so that [a + ¢, b]
is covered by the finite collection ((x;, yl.’ )ie(l,...,N.}- An elementary argument
then shows that

N¢ o0
F(b)— Fla+e) <Y (F(3) = Fx) < Y _(F(y)) = F(x;))

i=1 i=1
<Y (Fi) — F(x) +e.
i=1

Since ¢ was arbitrary and F(a + ¢) — F(a) as ¢ — 0, we get

o]

F(b) — F(a) < (F(y) — F(xi))

i=1

which gives the lower bound u((a, b]) > F(b) — F(a) and completes the
proof. O

Let F be as in part (ii) of the proposition, and let i be the finite measure such
that ' = F),. Then we may define, for every bounded Borel measurable function
f:R— R,

/f(X)dF(X) :=/f(X)/L(dX),
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and f f(x)dF(x) is called the Stieltjes integral of f with respect to F'. The notation
is motivated by the equality, for every a < b,

/l(a,h](x) dF(x) = F(b) — F(a).
We have also, for instance,
'/huumdFu>=;9&f1@ﬁﬁﬁwdF&)=Fw)—Fw—x

where F'(a—) denotes the left limit of F at a. In particular (taking b = a), the
function F is continuous if and only if p is diffuse.

Extension to Measures that Are Finite on Compact Sets of R The formula

FQ):{u«axD ifx 20,
—u((x,0]) ifx <O,

gives a one-to-one correspondence between measures i on R that take finite values
on compact sets (these measures are called Radon measures on R) and functions
F : R — R that are increasing and right-continuous and vanish at 0. This is an
easy extension of Proposition 3.12 and we omit the details. The equality u((a, b]) =
F(b) — F(a) for every a < b still holds, and the Stieltjes integral f f(x)dF(x)
makes sense, say when f is bounded with compact support. Note that, in the special
case F(x) = x, u is Lebesgue measure.

3.6 The Riesz-Markov-Kakutani Representation Theorem

In this section, we briefly discuss a famous representation theorem initially due
to Riesz in the case of functions defined on the unit interval. This theorem is a
cornerstone of the functional-analytic approach to measure theory. We say little
about this approach in the present book, because the “abstract” approach that we
have presented is much more adapted to applications to probability theory.

Recall that a topological space X is called locally compact if every point of X
has a compact neighborhood. Let us consider a locally compact metric space X. The
vector space of all real continuous functions with compact support on X is denoted
by C.(X). A linear form J on C.(X) is a linear mapping from C.(X) into R. It is
said to be positive if J(f) > 0 whenever f > 0.

A Radon measure on X is a measure p on (X, 5(X)) such that u(K) < oo for
every compact subset K of X. If u is a Radon measure on X, the formula

uﬁ=/fw
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defines a linear form J on C.(X). Notice that the integral is well defined since there
exist a constant C and a compact subset K of X such that | f| < C1g, and the
property w(K) < oo ensures that f is integrable. Moreover the linear form J is
positive.

The Riesz-Markov-Kakutani representation theorem provides a converse to the
preceding observations. Under suitable assumptions, any positive linear form on
C.(X) is of the previous type.

Theorem 3.13 Let X be a separable locally compact metric space, and let J be
a positive linear form on C.(X). Then there exists a unique Radon measure . on
(X, B(X)) such that

Ve CX), J(f) =/fdu-
The measure | is regular in the sense that, for every A € B(X),

w(A) =inf{u(U) : U open set, A C U}
= sup{u(K) : K compact set, K C A}.

Moreover, for every open subset U of X,

nU) =sup{J(f): f € Ce(X), 0= f <1y}

Example If X = R, we may take J(f) = I(f), where I(f) is as above the
Riemann integral of the function f (it is easy to verify that any function in C.(R) is
Riemann integrable). One verifies that J is a positive linear form on C.(R), and the
associated measure is (of course) Lebesgue measure. The Riesz-Markov-Kakutani
representation theorem thus provides another construction of Lebesgue measure.

We omit the proof of Theorem 3.13, as this theorem is not used elsewhere in
the present book. We refer to Chapter 2 of Rudin [22], which gives a slightly more
precise statement.

3.7 Exercises

Exercise 3.1 For any function g : R — R, show that g is B(R)-measurable if and
only if there exist two Borel measurable functions f and & such that f < g < h
and f = h, A ae.

Exercise 3.2 Let E be a compact metric space, and let i« be a probability measure
on (E, B(E)). Prove that there exists a unique compact subset K of E such that
w(K) =1and u(H) < 1 forevery compact subset H of K such that H # K. (Hint:
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Define K as the intersection of all compact subsets K’ of E such that u(K’) = 1,
and use Proposition 3.10 to verify that u(K) = 1.)

Exercise 3.3 Let F : R — R be a bounded continuous increasing function such
that F(—oo) = 0, and let ¢ : R — R be a continuously differentiable function.

(1) Show that

13&; \w(F(;)) —pr(’ . Y- R 1”(”;) -l \ 1))‘ =0

1
(2) Prove that (F(1)) =¢(F(0))+/ ¢ (F(s))dF (s).
0

Exercise 3.4 (Hausdorff Dimension) If A is a subset of R?, we denote the
diameter of A by A(A) = sup{|x — y| : x,y € A} € [0, oco]. For every o > 0
and every ¢ > 0, we set, for every subset A of Rd,

Ha,e(A) = inf AU,
*e (UkeneRe(A) %;

where R (A) is the set of all countable coverings of A by open sets of diameter
smaller than ¢.

(1) Observe that jty,(A) > g (A) if &€ < &, and thus one can define a mapping
A e (A) by

Mo (A) = 1im piq ¢ (A) € [0, co].
el0

(2) Prove that ug is an outer measure on R4,

(3) Verify that, for every subset A of R, there exists a (unique) real number
dim(A) € [0, d], called the Hausdorff dimension of A, such that, for every
o >0,

0 ifa > dim(A)
oo if @ < dim(A).

Ma(A) = {

(4) Leta > 0and let A be a Borel subset of R?. Assume that there exists a measure
won (R4, B(R?)) such that £(A) > 0 and u(B) < r® for every open ball B of
radius » > 0 centered at a point of A. Prove that dim(A) > «.
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Exercise 3.5 Let f : [0, 1] — R be a bounded function. For every x € [0, 1], we
define the oscillation of f at x by

w(f,x):= h_)l})n’}>osup{|f(u) — fW|:u,vel0,1],lu—x| <h,|v—x| <h}.

(1) Verify that f is continuous at x if and only if @ (f, x) = 0.

(2) Let I be a compact subinterval of [0, 1] and let & > 0. Prove that the condition
w(f, x) < e for every x € I implies the existence of @ > 0 such that | f (1) —
f)| < e wheneveru,v € I and |u — v| < «.

(3) Lete > 0and D, = {x € [0, 1] : w(f, x) > &}. Prove that D, is closed.

(4) Assume that f is Riemann-integrable. Prove that the set of discontinuity points
of f has Lebesgue measure 0. (Hint: If g and h are two step functions such that
g < f < h,onehas h — g > ¢ at every point of D, except possibly at a finite
number of points.)

(5) Prove the converse to question (4): if the set of discontinuity points of f has
Lebesgue measure 0, f is Riemann-integrable.

Exercise 3.6 Let (E, A, 1) be a measure space, such that 0 < u(E) < oco. We
suppose that there exists a bijection T : E —> E, such that both 7 and T~!
are measurable, and 7 preserves u in the sense that 7(u) = wu (equivalently
w(T~Y(A)) = u(A) for every A € A). We also assume that 7 has no periodic
point, so that the condition 7" (x) = x for x € E and n € Z can only hold if n = 0.
For every x € E, the orbit of x is defined by O(x) := {T"(x) : x € Z}. Note that
orbits form a partition of E (T"(x) = T™(y) can only hold if O(x) = O(y)). We
then construct a subset A of E by choosing a single point in each orbit (this strongly
relies on the axiom of choice).

(1) Prove that A is not A-measurable.

(2) Verify that the assumptions of the exercise hold if (E, A) = ([0, 1), B([0, 1))),
W is the restriction of Lebesgue measure to [0, 1), and T(x) = x + o — |x + o
where o € [0, 1) is irrational.



Chapter 4 )
L? Spaces ki

This chapter is mainly devoted to the study of the Lebesgue space L? of measurable
real functions whose p-th power of the absolute value is integrable on a given
measure space. The fundamental inequalities of Holder, Minkowski and Jensen
provide essential ingredients for this study. We investigate the Banach space
structure of L?, and in the special case p = 2, the Hilbert space structure of L2,
which has important applications in probability theory.

Density theorems showing that any function of L? can be well approximated
by “smoother” functions play an important role in many analytic developments.
As an application of the Hilbert space structure of L2, we establish the Radon-
Nikodym theorem, which allows one to decompose an arbitrary measure as the sum
of a measure having a density with respect to the reference measure and a singular
measure. The Radon-Nikodym theorem will be a crucial ingredient of the theory of
conditional expectations in Chapter 11.

4.1 Definitions and the Holder Inequality

Throughout this chapter, we consider a measure space (E, A, u). Forareal p > 1,
we let LP(E, A, i) denote the space of all measurable functions f : E —> R such
that

/ | f17du < oo.

Note that the case p = 1 was already considered in Chapter 2. We also introduce
the space L(E, A, ) of all measurable functions f : E —> R such that there
exists a constant C € R with

|fI<C, nae.
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We can also introduce the similar spaces Eé(E A, ) and LF(E, A, ) obtained
by considering complex-valued functions instead of real functions. However, in this
chapter, we will focus on the real case.

For every p € [1, oo], we define an equivalence relation on L£? by setting

f~g ifandonlyif f =g, nae.
We then consider the quotient space
LP(E, A, u) = LP(E, A, w)/~ .

An element of LP(E, A, ) is thus an equivalence class of measurable functions
that are equal w a.e. In what follows we will almost always abuse notation and
identify an element of L”(E, A, i) with one of its representatives in LP (E, A, u):
when we speak about a function in L?(E, A, 1), we mean that we have chosen a
particular representative in L” (E, A, ), and the subsequent considerations will not
depend on the choice of this representative.

We will often write L (u), or even simply L7, instead of L”(E, A, ) if there
is no risk of confusion. Notice that the space L' is just the space of all (equivalence
classes of) integrable functions.

For every measurable function f : E — R, and every p € [1, 00), we set

171 = ([ 17170) "

with the convention col/? = oo, and
| flloo =inf{C € [0,00] : | f| < C, pael}

in such a way that | f| < || f]lco, # a.€. and || f ] o is the smallest number in [0, c0]
with this property. We observe that, if f and g are two measurable functions such
that f = g, u a.e., we have || ||, = llgll, and thus we can define || f|, for f €
LP(E, A, ).

Let p, g € [1, oo]. We say that p and g are conjugate exponents if

1
+ =1
P oq

In particular, p = 1 and ¢ = oo are conjugate.
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Theorem 4.1 (Holder Inequality) Let p and q be conjugate exponents. Then, if
f and g are two measurable functions from E into R,

/Ifgldu = fliplgly -

In particular, fg € L\(E, A, n) if f € LP(E, A, n) and g € L4(E, A, ).

Remark 1In the last assertion, we implicitly use the fact that, if f and g are defined
up to a set of zero p-measure, the product fg (as well as the sum f + g) is also well
defined up to a set of zero p-measure.

Proof 1f || fll, = 0, we have f = 0, u a.e., which implies f | fgldu = 0, and the
inequality is trivial. We can thus assume that || f||, > O and |[g|l; > 0. Without
loss of generality, we can also assume that f € LP(E, A, u) and g € LY(E, A, )
(otherwise || f|| 5 llgll; = oo and there is nothing to prove).

The case p = 1 and ¢ = oo is very easy, since we have | fg| < |Iglloo| f], 1t a.€.,
which implies

/Ifgldu =< IIgIIoo/IfIdM = lglloll f 11

In what follows we therefore assume that 1 < p < oo (and thus 1 < g < o0).
Leta € (0, 1). Then, for every x € Ry

x¥—ax <1—a.
Indeed, define @ (x) = x* — ax for x > 0. Then, for x > 0, we have ¢, (x) =
a(x* 1 — 1), and thus ¢/(x) > 0if x € (0, 1) and ¢’(x) < 0if x € (1, 00). Hence

¢y attains its maximum at x = 1, which gives the desired inequality. By applying
this inequality to x = 7, where u > 0 and v > 0, we get

uv' "% <au + (1 —a)v,

and this inequality still holds if v = 0. We then take o = 11, (sothat] —a = ;) and
[f(x)IP lg()|?
u= p ’ v= q
A1 lgllg

to arrive at

|fCIgCOl _ TIfFI” | Tl
IFplgle = P UfI  a lelf
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By integrating the latter inequality with respect to w(dx), we get

1 f 1 1
Ifgldp <+ =1,
Ifplgly P 4

which completes the proof. O
The special case p = g = 2 of the Holder inequality is of particular importance.

Cauchy-Schwarz Inequality If f and g are two measurable functions from E into

R,
[rstan = ([ irean) " ( [1sPan) " = isieiste

Let us give some easy but important consequences of the Holder inequality.

Corollary 4.2 Suppose that w is a finite measure. Then, if p and q are conjugate
exponents, with p > 1, we have, for any real measurable function f on E,

£l < wEY £,

and consequently LP C L' for every p € (1, 00]. More generally, for any 1 < r <
r’ < oo,

1_1
IF1 < w(EY 7 N f I,

and thus LY C L? when 1 < p < g < oo.

Proof The bound || f|l; < w(E)V4 | f| p follows from the Holder inequality by
taking g = 1. For the second bound of the corollary, just replace f by | f|” and take
p=r'/r. O

When p is a probability measure, the corollary gives || f]l, < [ fll4 for every
1 < p < g < oo (the case g = oo is immediate). This last inequality can also be
derived from Jensen’s inequality stated in the next theorem.

Theorem 4.3 (Jensen’s Inequality) Suppose that u is a probability measure, and
let ¢ : R —> R be a convex function. Then, for every f € L'(E, A, 11),

/fﬂOfduzw(ffdM)-

Remark The integral [¢ o fdu is well defined as the integral of a nonnegative
measurable function.
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Proof Set
& =1{(a,b)e R? : Vx € R, ¢(x) > ax + b}.
Then elementary properties of convex functions show that

Vx e R, ¢kx)= sup (ax+b).
(a,b)e&,y

Since g o f > af + b for every (a, b) € &y, we get

/gaofduz sup /(af—i—b)du: sup (a/fdu—l—b) :<p</fdu). O
(a,b)e€,y (a,b)e€,y

4.2 The Banach Space L?(E, A, )

We now state another fundamental inequality of the theory of L? spaces.

Theorem 4.4 (Minkowski’s Inequality) Let p € [1,00], f,g € LP(E, A, ).
Then, f + g € LP(E, A, u) and

If+glp < Ifllp+lglp-

Proof The cases p = 1 and p = oo are very easy, just by using the inequality
|f +gl <I|fl+]|gl. Sowe assume that 1 < p < co. Writing

If +gl” < (f1+1gh? < 2max(|f], lg))” < 27( 17 + lgl”)

we see that [ |f + g|Pdu < oo and thus f + g € LP”. Then, by integrating the
inequality

lf+el?=1f+elxIf+elP ' <IflIf+glP ' +lgllf +gIP!

with respect to u, we get

/|f+g|f’dus/|f||f+g|l’*1du+/|g||f+g|P*1du.

By applying the Holder inequality to the conjugate exponents p andg = p/(p — 1),
we get from the preceding display that

p—1 p—1

/If+glpdu5 IIfIIP(/IergI”du) 3 +|Ig||p(/|f+g|"du) "
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If f |f + g|Pdp = 0, the inequality in the theorem is trivial. Otherwise, we can
divide each side of the preceding inequality by (/| f + g|” dp)P=D/P and we get
the desired result. O

Theorem 4.5 (Riesz) Forevery p € [1, oo, the space LP(E, A, ) equipped with
the norm f + || f|p is a Banach space (that is, a complete normed linear space,
see the Appendix below).

Proof Consider first the case 1 < p < oo. Let us verify that f — | f||, defines a
norm on L”. We have

||f||p=0:/|f|f’du=o:,f=o, e,

which means that f = 0 in L? (f belongs to the equivalence class of the function
0; the point of replacing L? (E, A, u) by L? (E, A, w) is indeed to get the property
I fllp =0= f = 0). The property |[Af ||, = |A[|| fll, for A € R is immediate and
Minkowski’s inequality gives the triangle inequality.

We then have to show that L? equipped with the norm || - ||, is complete. Let
(fn)n=1 be a Cauchy sequence in (L?, | - ||,). We may find a strictly increasing
sequence (k,),ecN of positive integers such that, for every n > 1,

I finsr — frallp <277

Set gn = fi,,so that ||g,r1 — gullp < 27" for every n € N. Using the monotone
convergence theorem and then Minkowski’s inequality, we have

00 N
/(Zlgn+1 —gnl)pdu = Al/lTIgO 1 f <Z|gn+1 —gnl)pdu
n=1 n=1

IA

N
. p
Jim (X lgnsr — sl

n=1

oo
p
= (D lgus1 — gally)
n=1

< Q.

We have thus, by Proposition 2.7 (2),

o
Z'gn+1 —gnl <00, pae.

n=1
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For every x such that Yo | [gn+1(x) — g (x)| < 00, we can therefore set

hx) = g1(x) + D (gnr1(¥) — gn (1) = lim g, (x)

n=1

where the series is absolutely convergent. On the (measurable) set N of zero u-
measure on which Zflozl |gn+1(x) — gn(x)| = oo, we take h(x) = 0. The function
h is then measurable by Lemma 1.15. Since g, converges to &, u a.e., we have
|h| = liminf|g,|, u a.e., and Fatou’s lemma immediately gives

/Ihl”du < liminf/ lgnlPdp < SUP/ lgnlPdp < oo,

n>1

because the Cauchy sequence (f;;),en is bounded in L”. Hence, h € L”. Then,
thanks again to Fatou’s lemma, we have, for every n > 1,

I — gnlly = f lh — gul?dp < liminf/ lgm — gnlPdp = liminf || gy — gullh
m— 00 m— 00
S (2*"4’1)1)
where, for m > n, we have used the bound

ligm — gnllp < llgns1 — gullp + -+ ligm — gm-1ll, < 27"

The preceding bound shows that the sequence (g,),eN converges to h in LP.
Because a Cauchy sequence having a convergent subsequence must also converge,
we have obtained that the sequence (f;,),eN converges to i, which completes the
proofin the case 1 < p < oo.

Let us turn to the (easier) case p = oo. The fact that f > || f||co defines a norm
on L™ is proved in the same way as in the case p < oo. Then, let (f,),>1 be a
Cauchy sequence in L°°. By the definition of the L*>°-norm, for every m > n >
1, there is a measurable set N, , of zero p-measure such that we have | f,(x) —
Jn ()| < lfn — fmlloo forevery x € E\N, ;. Let N be the (countable) union of all
sets Ny, form > n > 1, so that we have again u(N) = 0, and | f;,(x) — f (x)| <
Il fu — fmlloo foreverym > n > 1 and every x € E\N. Hence, for every x € E\N,
the sequence (f;,(x)),>1 is Cauchy in R and converges to a limit, which we denote
by g(x). We also take g(x) = O if x € N. The function g is measurable, and by
passing to the limit m — oo in the preceding bound for | f;; (x) — fi (x)] we get

sup | fu(x) —g(x)| < sup I fo — finlloo-
xeE\N me{n+1,n+2,...}
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The right-hand side tends to 0 as n — oo and it follows that || f; — gllcc —> 0 as
n — oo. Consequently g € L* and f,, —> g in L®. This completes the proof.
O

Example If E = N and u is the counting measure, then, for every p € [1, c0), the
space L? (N, P(N), ) is the space of all real sequences a = (a,),eN such that

00
Z lan|P < oo
n=1

equipped with the norm

- 1/p
lally = (3 laal?)
n=1

The space L™ is simply the space of all bounded real sequences (a;,),eN With the
norm ||allcc = sup,cy lax|. Note that in this case there are no (nonempty) sets of
zero measure, and thus L” coincides with £”. This space is usually denoted by
£P = ¢P (N). It plays an important role in the theory of Banach spaces.

In the proof of Theorem 4.5, we have derived an intermediate result which
deserves to be stated formally.

Proposition 4.6 Let p € [1,00) and let (f,)neN be a convergent sequence in
LP(E, A, ) with limit f. Then there is a subsequence (fx,)neN that converges
pointwise to f except on a measurable set of zero (L-measure.

Remark The result also holds for p = oo, but in that case there is no need to extract
a subsequence, as the convergence in L is equivalent to uniform convergence
except on a set of zero measure.

Let us mention a useful by-product of Lemma 4.6. If (f;;)neN 1S a convergent
sequence in L”(E, A, 1) with limit f, and if we also know that f,(x) — g(x),
u(dx) a.e., then f = g, u ae.

For p € [1,00), one may ask whether conversely a sequence (f;)neN in
LP(E, A, n) that converges u a.e. also converges in the Banach space L? (E, A, u).
This is not true in general, but the dominated convergence theorem implies that, if
the following two conditions hold,

G fun — f,nae.,
(i1) there exists a nonnegative measurable function g such that f gPdu < oo and
| ful < g, nae., foreveryn € N,

then the functions f,,, f arein L? and f,, — f in L.
See Exercise 4.3 for another simple criterion that allows one to derive L”
convergence from almost everywhere convergence.
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The case p = 2 of Theorem 4.5 is especially important since the space L> has
a structure of Hilbert space (see the Appendix below for basic facts about Hilbert
spaces).

Theorem 4.7 The space L*>(E, A, 1) equipped with the scalar product

(f.8) = / fedu

is a real Hilbert space.

Proof The Cauchy-Schwarz inequality shows that, if f, g € L?, fg is integrable
and thus (f, g) is well defined. Then it is clear that (f, g) — (f, g) defines a scalar
producton L2, and (f, f) = ||f||%. The fact that (L2, || - ||2) is complete is a special
case of Theorem 4.5. O

Classical results of the theory of Hilbert spaces can thus be applied to
L%(E, A, p). If particular, if ® : L*(E, A,;u) — R is a continuous linear
form, there exists a unique element g of L? such that ®(f) = (f, g) for every
f € L? (Theorem A.2 in the Appendix below). This result will be useful in what
follows.

Remark Like preceding results, Theorem 4.7 extends to the case of complex
functions. The space L% (E, A, ) (defined from ﬁ%(E , A, ) in the same way as
we defined L2(E, A, p) from £2(E, A, n)) is a complex Hilbert space for the scalar
product

tro) = [ raau.

where as usual z denotes the complex conjugate of z € C.

4.3 Density Theorems in L? Spaces

Let (E, d) be a metric space. Recall that a function f : E —> R is said to be
Lipschitz if there exists a constant K > 0 such that

Vx,ye E, |f(x)—fl=Kdkx,y).
A measure p on (E, B(E)) is said to be outer regular if, for every A € B(E),

w(A) = inf{u(U) : U openset, A C U}.
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This property holds as soon as pu is finite (Proposition 3.10). Theorem 3.13 (which
we stated without proof) also shows that it holds for a Radon measure on a separable
locally compact metric space, and in fact we will recover that result in the proof of
the next statement.

Considering the general case of a measurable space (E, A), we have introduced
the notion of a simple function in Chapter 2. If u is a measure on (E, A), it is
immediate that a simple function that is integrable with respect to w is also in L? (1)
for every p € [1, 00).

Theorem 4.8 Let p € [1, 00).

(1) If (E, A, n) is a measure space, the set of all integrable simple functions is
dense in LY (E, A, ).

2) If (E, d) is a metric space, and ju is an outer regular measure on (E, B(E)),
then the set of all bounded Lipschitz functions that belong to L? (E, B(E), i)
is dense in LP (E, B(E), ).

(3) If (E, d) is a separable locally compact metric space, and (1 is a Radon measure
on E, then the set of all Lipschitz functions with compact support is dense in
LP(E, B(E), ).

Proof

(1) Since we can decompose f = ft — f~, itis enough to prove that, if f is a
nonnegative function in L”, then f is the limit in L? of a sequence of simple
functions. By Proposition 2.5 we can write

f=lim 1 g,
n—o0

where, for every n € N, ¢, is a simple function and 0 < ¢, < f. Then

[ lgnlPdi < [ | fIPdu < oo and thus ¢, € L? (which is equivalent to ¢, € L'

for a simple function). Since |f — ¢,|? < f?, the dominated convergence

theorem gives

lim [ |f — gul?du =0.

n—o0
(2) Thanks to part (1), it is enough to prove that any integrable simple function can
be approximated in L? by a bounded Lipschitz function. Clearly, it is enough to
treat the case where f = 14, with A € B(E) and u(A) < oo. Thenlet e > 0.

Since u is outer regular, we can find an open set O containing A and such that
w(O\A) < (¢/2)? (in particular u(O) < 00). It follows that

e

10 —1 < .
1o —1allp )
Then, for every k > 1, set gr(x) = (kd(x, O°)) A 1 for every x € E. The
function ¢y is Lipschitz and bounded, and ¢x 1 1o pointwise as k — co. By
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dominated convergence, we have f 1o — ¢x|Pdu —> 0 as k — oo, and thus
we may find k large enough such that

&
10 — <
lo — @kllp ’

For this value of k, we have |14 — ¢illp < [1a —1ollp + 1o — @kllp < &.

(3) We use the following topological lemma, whose proof is postponed after the
proof of Theorem 4.8. If A is a subset of E, A° denotes the interior of A, and A
denotes the closure of A.

Lemma 4.9 Let E be a separable locally compact metric space. There exists an
increasing sequence (Lp),eN of compact subsets of E such that, for every n € N,
L,CL, and

E=JL,=JL;.

n>1 n>1

The lemma easily implies that any Radon measure p on E is outer regular (this
was already stated without proof in Theorem 3.13). Indeed, let A be a Borel subset of
E,and let ¢ > 0. For every n € N, we may apply Proposition 3.10 to the restriction
of u to L, (which is a finite measure) and find an open subset O,, of E such that
ANL; C Oyand

W(On NLYNANLY) < 27",

Up to replacing O, by O, N L;, we can assume that O, C L. Then the union
O = U, .ey On is an open subset of E and

p(0\A) <Y u(O\ANLY) <e.

n>1

This proves that u is outer regular.

We can then apply part (2) of the theorem, and we see that it is enough to prove
the following claim: if f is a bounded Lipschitz function on E such that f [f1Pdu <
0o, then f is the limit in L? of a sequence of Lipschitz functions with compact
support (such functions are automatically in L?). In order to prove our claim, we
start by using dominated convergence to get

lim | f17du = 0,

n—oo (L;)C
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and thus || f — f1sll, —> 0asn — oo. On the other hand, for every fixed n € N
and every k € N, if

Pnk(x) = (kd(x, (LN AL, x€E,

we have ¢, € LP (since ¢, < le) and moreover, using again dominated

convergence, ¢,  converges to 1 Lo in L? as k — oo. Finally, writing

If = fonillp = I1f = fleglp + 1/ Ly = fonillp
= I = fleglp + 1 ooy — @nkllps

we see that, for every ¢ > 0, we can choose n and then k large enough so that
| f — fenkllp < €. This gives our claim, since the function f ¢,  is Lipschitz with
compact support. a

Proof of Lemma 4.9 We first show that E is the union of an increasing sequence
(Ku)n>1 of compact sets. To this end, let (x,) ,cn be a dense sequence in E. Let /
be the set of all pairs (p, k) of positive integers such that the ball B (x P 27Ky is
compact (we use the notation Bg (x, r) for the closed ball of radius r centered at
x in E). For every x € E, we can find an integer k € N such that Be(x,27%) is
compact, and then an integer p € N such thatd(x, x,) < 27%=1 which implies that
the ball Bg (xp, 27k=1y contains x and is compact, and in particular (p, k+ 1) € I.
It follows that

E = U BE(xp,27%).
(p,k)el

On the other hand, since [ is countable, we can find an increasing sequence (1), eN
of finite subsets of / such that 7 is the union of the sets I,,. Then, if we set

K, = U BE(xps 271{)
(p.k)ely

for every n € N, the sets K, are compact and their union is E.

We then construct the sequence (L), N by induction on n. We take L1 = K. If
L, has been constructed, we find a cover of the compact set K, 1 U L, by a finite
union Vi U V2 U... U V), of open balls with compact closure whose centers belong
to K1 U Ly, and we take Ly,+1 = Vi U Vo2 U ... U V,. The sequence (Ly),eN
satisfies the desired properties. O

Consequences For every p € [1, 00):

(i) The space C.(R?) of all continuous functions with compact support on R¢
is dense in L? (R4, B(R?), 1). The measure A can be replaced by any Radon
measure on (R?, B(RY)).
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(i) A step function on R is a real function defined on R that vanishes outside some
compact interval [a, b] and whose restriction to [a, b] satisfies the properties
stated at the beginning of Section 3.3. Then the set of all step functions on R
is dense in LP (R, B(R), A). Indeed, it is enough to verify that any function
f € C:(R) is the limit in L? of a sequence of step functions. This follows from
the fact that f can be written as the pointwise limit

. k
fzni%o(éf(n“lﬁf:‘))’

and dominated convergence shows that this limit also holds in L?.

Application (Riemann-Lebesgue Lemma) Recall from Section 2.3 the definition
of the Fourier transform f of a function f € L'(R, B(R), »). We claim that

fe) — o

|§]—>00

We first observe that it is enough to prove this when f is a step function on R.
Indeed, by property (ii) above we can find a sequence (¢,),cN of step functions
with compact support such that ||¢, — f||1 tends to 0 as n — oo. Then, we just have
to observe that

sup 716) = 31(6)] = sup| / e Edx — / o) Edx| < IIf ~ gallr.

EeR
Finally, if ¢ is a step function on R, we can write
p
o(x) = Zaj Lo (), A(dY) ae.
j=1

where a1, ...,ap € Rand x; < xp <--- < xp41, and we have

— 0.

einjH _ einj)
|§]—>00

p
pe =2 ("
j=1

4.4 The Radon-Nikodym Theorem

Definition 4.10 Let 1 and v be two measures on (E, A). We say that:

(i) v is absolutely continuous with respect to u (notation v < w) if

VAe A, u(A) =0= v(A)=0.
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(i1) v is singular with respect to p (notation v L ) if there exists N € A such that
w(N) =0and v(N°) =0.

Example Let f be a nonnegative measurable function on E. The measure v = f -
defined in Corollary 2.6 by

v(A) :=/ fdu
A

is absolutely continuous with respect to (.
Recall that the measure p is o-finite if E is a countable union of sets of finite
[-measure.

Theorem 4.11 (Radon-Nikodym) Suppose that the measure | is o -finite, and let
v be another o -finite measure on (E, A). Then, there exists a unique pair (vq, vg)
of o -finite measures on (E, A) such that

1) v=v4+ vy
2) ve € pandvg L pu.

Moreover, there exists a nonnegative measurable function g : E —> R such that
Vg, = g - U, meaning that

VA € A, va(A)zfgd/L,
A

and the function g is unique in the sense that, if g is another function satisfying the
same properties, we have § = g, | a.e.

The first part of the theorem, namely the decomposition of v as the sum of an
absolutely continuous part and a singular part, is known as Lebesgue decomposition.
If v <« u, the theorem gives the existence of a nonnegative measurable function g
such that v = g - . In that case, the function g is often called the Radon-Nikodym
derivative of 1 with respect to v.

Proof We provide details in the case when both p and v are finite, and, at the end
of the proof, we explain the (straightforward) extension to the o -finite case.

Step 1: pu and v are finite and v < . We assume that v < p, meaning that v(A) <
w(A) forevery A € A (and in particular v < w), which easily implies that f gdv <
[ g du for every nonnegative measurable function g. Consider the linear mapping
@ : L*(E, A, 1) — R defined by

o(f) = / fv.
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Note that the integral is well defined since f |fldv < f | fldp and we know that
LZ(M) C Ll(,u) when u is finite. Furthermore the mapping @ makes sense since
@ (f) does not depend on the representative of f chosen to compute f fdv:

f=f pae=f=f, va.e.:>/fdv=/fdv.

The Cauchy-Schwarz inequality then shows that
12 12
1= ([ £av) oo = ([ £a) e = o) s,

where we write || f |2, (instead of || f|2) for the norm on L*(E, A, w), to avoid
confusion with the norm on L2(E , A, v). It follows that @ is a continuous linear
form on L?(E, A, 1) and, thanks to the classical property of Hilbert spaces stated
in Theorem A.2, we know that there exists a function g € L2(E , A, 1) such that

Vi€ LAE A, D) = (f8) A = f Fodu.

In particular, taking f = 14, we have

VAe A, v(A)= / gdu.
A
We can also observe that 0 < g < 1, u a.e. In fact, for every ¢ > 0,

p{x e E:gx) =z 1+eh) zv({fx e E:gx) = 1+¢})

= / gdu
{x:g(x)>1+¢}

z(U+ouxeE:glx)=1+e))

which implies that u({x € E : g(x) > 1 + ¢}) = 0, and then, by taking a sequence
of values of ¢ decreasing to O, that u({x € E : g(x) > 1} = 0. A similar argument
left to the reader shows that g > 0, u a.e. Up to replacing g by the function (gVVO)A 1
(which is equal to g, i a.e.), we can assume that 0 < g(x) < 1 forevery x € E. In
particular, we have obtained the properties stated in the theorem with v, = g - and
vy = 0. The uniqueness of g will be derived in the second step under more general
assumptions.

Step 2:  and v are finite. We apply the first part of the proof after replacing u by
u + v. It follows that there exists a measurable function / such that0 < 4 < 1 and,
for every function f € L%(u +v),

[ rav= [ shagesn.



78 4 LP Spaces

In particular, we get for every bounded measurable function f,

/fdv:/fhd,u—l—/fhdv

and it follows that

ff(l—h)dv:ffhdu. @.1)

Using the monotone convergence theorem, we get that this last equality holds for
any nonnegative measurable function f.

Set N = {x € E : h(x) = 1}. Then, by taking f = 1y in (4.1), we obtain that
W (N) = 0. The measure

vy =1y -V (ie. VA e A, vs(A) =v(ANN))

is thus singular with respect to p. On the other hand, if in (4.1) we replace f by
1y¢(1 — h)~! f, we obtain that, for every nonnegative measurable function f,

h
rav=[ 1", au= [ roan
NL‘ NL‘ 1 - h

where g = 1y 1fh. Setting
Va=1N"'V=g'M

we get that properties (1) and (2) of the theorem both hold, and v, is the measure of
density g with respect to w. Note that f gdu =v,(E) < o0.

Let us verify the uniqueness of the pair (v, vs). If (Vg4, Vy) is another pair
satisfying the same properties (1) and (2), we have

VAe A, vg(A) —U5(A) = V,(A) — v, (A). 4.2)
Thanks to the properties vy L p and ¥y L p, we can find two measurable sets N
and N of zero u-measure such that vs(N¢) = 0 and 95 (N¢) = 0, and then, for every
Ae A,
vs(A) = B5(A) = v(AN (N UN)) = (AN (N UN))
=D, (AN(NUN)) —v(AN(NUN)) =0

using the fact that (N U N) = 0 and the properties v, < u and 7, < . It follows
that vy = vy, and then v, = v, using (4.2).
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Finally, to get the uniqueness of g, suppose that there is another function g such
that v, = g - . Then, writing {g > g} forthe set {x € E : g(x) > g(x)},

/ §du=va({§>g})=/ gdu,
{g>g) {g>8)

which implies

/ @—9du=0
{g>g}

and Proposition 2.7 gives 1(3.,1(8 — &) =
By interchanging g and g, we also get g <
1 a.e. as desired.

Step 3: General case. If ; and v are only supposed to be o-finite, we may construct
a sequence (E,),enN of disjoint measurable subsets of E such that u(E,) < oo and
v(E,) < oo forevery n € N, and E =, oy En (we first find a countable partition
(E)nen of E such that u(E)) < oo for every n, and another partition (E})eN of
E such that v(E})) < oo for every m, and we order the collection (E, NE},) , myen?
in a sequence). Let u,, be the restriction of u to E, and let v, be the restriction of v
to E,. By step 2, we can write, for every n € N,

W a.e., which implies g < g, u a.e.

0’
g, u a.e., and we conclude that g = g,

vy = v + vy

where v L w,,and v} = g, - i, and we can assume that the measurable function
gn vanishes on Ef, (since u,(E;) = 0, we can always impose the latter condition
by replacing g, by 1£,g,). The desired result follows by setting

ve= D Vi, ue= v, g=) g

neN neN neN

noting that, for every x € E, there is most one value of n for which g,(x) > 0
(because the sets E;, are disjoint). The uniqueness of the triple (v,, vs, g) is obtained
by very similar arguments as in the case of finite measures. In the analog of (4.2),
one should suppose that A C E,, for some n € N, and when proving the uniqueness
of g, one should replace {g > g} by {g > g} N E,, but otherwise the proof goes
through without change. O

Remark One may wonder whether the o-finiteness assumption is really necessary
in Theorem 4.11. To give a simple example, suppose that p is the counting measure
on ([0, 1], B([0, 1])) and v is Lebesgue measure on ([0, 1], B([0, 1])). Then it is
trivial that v < p (the only set of zero pu-measure is &), but the reader will easily
convince himself that one cannot write v in the form g - n with some nonnegative
measurable function g. This is not a contradiction since u is not o -finite.
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Examples

(1) Take (E, A) = (R, B(R)) and suppose that & = f - A, where X is Lebesgue
measure. Assume that the function f is positive on (0, co) and vanishes on
(—o00,0]. Then, if v = g - A is another measure absolutely continuous with
respect to A, the Lebesgue decomposition of v with respect to u reads

v=h-u+6

where h(x) = 1(0,00)(x) g(x)/f(x) and 6(dx) = 1(_c0,07(x) v(dx).

(2) Take E = [0, 1) and A = B([0, 1)), and also consider, for every n € N, the
o-field

i—1 i "
Fon=0( o 2n);l ef{1,2,...,2"},

so that any A € F, is a finite union of intervals [(i — 1)27",i27"). Write A
for Lebesgue measure on [0, 1) and let v be a finite measure on B([0, 1)). By
restricting A and v to sets in F,, we can view both A and v as measures on
([0, 1), F»,), and we observe that v is then absolutely continuous with respect to
A (just note that any nonempty set of F, has positive A-measure). Furthermore,
an immediate verification shows that the Radon-Nikodym derivative of v with

respect to A, when both v and A are viewed as measures on ([0, 1), F,), is given
by

on

i — 1)2n, j2n
) =" V=2 52 Li—1y2n,i2-m) (X).

2*}1
i=1

At the end of Section 12.3 below, we use martingale theory to prove that there
is a Borel measurable function f such that f,,(x) — f(x), A a.e., and that the
absolutely continuous part of the Lebesgue decomposition of v with respect to
A (considering now v and X as measures on the o-field A = B([0, 1)))is f - A.

Proposition 4.12 Let  be a o-finite measure on (E, A), and let v be a finite
measure on (E, A). The following two conditions are equivalent:

1) v,
(ii) For every ¢ > 0, there exists § > 0 such that, for every A € A, u(A) < §
implies v(A) < e.

Proof The fact that (ii) = (i) is immediate. Conversely, if v < p, Theorem 4.11
allows us to find a nonnegative measurable function g on E such thatv = g- . Note
that f gdu = v(E) < oo, and thus the dominated convergence theorem shows that

/ 1gonjgdu njgo 0.
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Then, given ¢ > 0, we can choose M € N large enough so that

&
/1{g>M}gd[,L < 2.

If we fix § = ¢/(2M), we get for every A € A such that u(A) < §,

I
v) = [ gdn= [temgdn+ [ Lingemgdn <+ Muca) <.
A

4.5 Exercises

Exercise 4.1 When 1 < p < oo, show that equality in the Holder inequality
f [fgldw < I fllpliglly holds if and only if there exist two nonnegative reals «,
not both zero, such that «| f|? = B|g|?, u a.e.

Exercise 4.2

(1) Show that, if u(E) < 00, one has || fllco = limp— oo || f |l for any measurable
function f : E — R.

(2) Show that the result of question (1) still holds when w(E) = oo if we assume
that || f||, < oo for some p € [1, 00).

Exercise 4.3 We assume that u(E) < oo. Let (f,)nen and f be real measurable
functions on E, and let p € [1, co). Show that the conditions

Q) fn— fouae,

(ii) there exists areal r > p such that sup/ | ful"dp < o0,
neN

imply that f, — fin L?.

Exercise 4.4 Let p € [1, 00) and let (f;,)nen and f be functions in LP(E, A, u).
Assume that f, — f, n ae., and || full, —> [ fllp as n — oo. Show that
fn —> f in LP. This extends Exercise 2.8. (Hint: Argue as in the proof of the
dominated convergence theorem.)

Exercise 4.5 Let p € [1,00) and let (f,),eny and f be nonnegative functions in

LP(E, A, p). Show that, if f, — fin L?, then, foreveryr € [1, p], f; converges

to f"in LP/". (Hint: If x, y > 0 and r > 1, check that [x" — y"| < r|x — y|(x" " +
-1

Y
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Exercise 4.6 Let f be a real measurable function on (E, A, u) such that u({x €
E: f(x) #0}) > 0. Forevery real p > 0, set ¢(p) = [ | f|Pdpu.

(1) Provethattheset/ = {p > 0: ¢(p) < oo} is an interval (possibly a singleton).

(2) Prove that the function ¢ +— log ¢(¢) is convex on I and that ¢ is continuous
on/.

(3) Let p,q,r € I with p < r < g. Prove that ¢(r)'/" < max{e(p)'/?, p(¢)'/%}.

Exercise 4.7 (Hardy’s Inequality) Let p € (1, c0).

(1) Let f : Ry —> R4 be a nonnegative continuous function with compact
support contained in (0, co). Set F(0) = 0 and, for every x > O,

1 X
F(x) = / f(@)dr.
x Jo
Prove that

/OO F)Pde= 7 /oo FOOF)P ! dx.
p—1Jo

0
(Hint: Use the fact that F(x)? = F(x)F(x)?~! = (f(x) — xF'(x))F(x)P~!
and an integration by parts.) Infer that F € L (R4, B(R4), A), and

p
11y < p_1||f||p- (4.3)

(2) We now assume only that f € LP (R, B(Ry), A). Verify that the definition of
F still makes sense and the bound (4.3) still holds.

Exercise 4.8

(1) Let f and g are two nonnegative measurable functions on (E, A, ) such that
fg > 1. Prove that

/fdu/gduzu(E)z-
E E

(2) Characterize the measure spaces (E, A, i) on which there exists a measurable
function f > 0 such that both f and 1/f are integrable.
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Exercise 4.9

(1) Let p € [1,00), let g be the conjugate exponent of p, and let f €
LP(R, B(R), A). For every x € R, set F(x) = f(f f(t)dt (where as usual
fo fHdt = — fxo f(@)dt if x < 0). Verify that F is well-defined, and prove
that

sup,er | F(x +h) — F(x)| 0
h—0,h>0 || /4 -
where |h|!/9 = 1if p = 1. (Hint: Use the last question of Exercise 2.9.)
(2) Let g : R —> R be a continuously differentiable function, such that g €
L'(R, B(R), A). Assume that g € LP(R, B(R), A) for some p € [1, 00). Prove
that g(x) — O as |x| — oo.

Exercise 4.10 Give a proof of Proposition 4.12 that does not use Theorem 4.11.
(Hint: Use Lemma 1.7 and Exercise 2.3.)
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Product Measures Cheeicfo

Given two measurable spaces E and F and two measures i and v defined on E
and F respectively, one can construct a measure on the Cartesian product E x F
equipped with the product o-field. This measure is called the product measure of p
and v and denoted by i ® v. The integral of a real function f (x, y) with respect to
1 ® v can be evaluated by computing first the integral of the function x — f(x, y)
with respect to the measure £ (dx) and then integrating the value of this integral
with respect to v(dy), or conversely. This is the famous Fubini theorem, which holds
under appropriate conditions on the function f, and in particular if f is nonnegative
and measurable. Beyond its important applications in analysis (integration by parts,
convolution, etc.) or in probability theory, the Fubini theorem is also an essential
tool for the effective calculation of integrals. As a typical application, we compute
the volume of the unit ball in R?.

5.1 Product o-Fields

Let (E, A) and (F, B) be two measurable spaces. The product o-field 4 ® B was
introduced in Chapter 1 as the o-field on E x F defined by

A®B:=0c(Ax B : Ac A, BeDB).

Sets of the form A x B, for A € Aand B € B, will be called (measurable) rectangles.
It is easy to verify that A® 5 is also the smallest o-field on E x F for which the two
canonical projections 71 : E X F —> E andm; : E x F —> F are measurable.

Let (G, C) be another measurable space, and consider a function f : G —>
E x F, which we write f(x) = (f1(x), f2(x)) for x € G. By Lemma 1.12, f is
measurable (when E x F is equipped with the product o-field) if and only if both
f1 and f; are measurable.
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Remark The definition of the product o -field is easily extended to a finite number
of measurable spaces, say (Ey, A1), ..., (Ey, Ay):

AR - A, =0(A; x---x Ay 1 A;j € A; foreveryi € {1,...,n})
and the expected “associativity” properties hold. For instance, if n = 3,
A4 AL=4(ALA)=40 LR A3.

Consider again the two measurable spaces (E, A) and (F, 13). We introduce some
notation in view of the next proposition. If C C E x F,and x € E, we let C, be
the subset of F defined by

Cy:={yeF:(x,y)eC}.
Similarly, if y € F, we let C” be the subset of E defined by
CY.={xeE:(x,y)eC}

If f is a functionon E x F, and x € E, we let f; be the function on F defined
by fi(y) = f(x,y). Similarly, if y € F, f” is the function on E defined by

[P = fx,p).
Proposition 5.1

(1) Let C € AQ® B. Then, for every x € E, Cx € B and, foreveryy € F, CV € A.

(ii) Let (G, G) be a measurable space and let f : E x F —> G be measurable
with respect to A @ B. Then, for every x € E, fy is B-measurable, and, for
everyy € F, f” is A-measurable.

Proof

(i) Fix x € E and set
C={Ce AR B:Cy € B}

Then C contains all measurable rectangles (if C = A x B, we have C, = B
or Cy = & according as x € A or x ¢ A). On the other hand, it is easy to
verify that C is a o-field, and it follows that C = A ® B. This gives the property
C, € B forevery C € A® B. The property C¥ € A is derived in a similar
manner.

(i) For every measurable subset D of G,

D) ={yeF:fi(WeDi={yeF:(x,y) e f (D)= "1D)x

which belongs to B by part (i). O
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5.2 Product Measures

We start by constructing the product measure of two o -finite measures.

Theorem 5.2 Let p and v be two o-finite measures on (E, A) and on (F,B)
respectively.

(1) There exists a unique measure m on (E x F, A® B) such that, for every A € A
and B € B,

m(A x B) = n(A)v(B) 5.1)

with the usual convention 0 x oo = 0. The measure m is o -finite, and is denoted
bym=puQv.

(ii) Forevery C € A® B, the function x — v(Cy) is A-measurable on E, and the
Sunction y — w(C?) is B-measurable on F, and we have

M®v(C)=/EV(Cx)M(dX)=/Fu(Cy)V(dy)-

Proof Uniqueness We verify that there is at most one measure m on E x F such that
(5.1) holds. We first observe that we can find an increasing sequence (A, )N in A,
and an increasing sequence (By),cN in B, such that u(A,) < oo and v(B,) < oo,
foreveryn € N,and E = J,,cy Ans F = U, en Bn- Then, if G, = A, x By, we
have also

ExF:UGn.
neN

Let m and m’ be two measures on A @ B that satisfy the property (5.1). Then,

« we have m(C) = m/(C) for every measurable rectangle C, and the class R of
all such rectangles is closed under finite intersections and generates the o -field
A ® B, by the definition of this o -field;

o foreveryn € N, G, € Rand m(G,) = u(Ap)v(B,) = m'(G,) < oo.

By Corollary 1.19, this suffices to give m = m’.

We also note that, once we have established the existence of m satisfying
(5.1), the fact that it is o-finite will be immediate since we will have m(G,) =
W(A,)v(B,) < oo foreveryn € N.

Existence We define the measure m via the first equality in (ii),

m(C) ::/EV(CX)“(dx)’ (5.2)
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forevery C € A®B. We first need to explain why the right-hand side of (5.2) makes
sense. We note that v(Cy) is well defined for every x € E thanks to Proposition 5.1.
To verify that the integral in (5.2) makes sense, we also need to check that the
function x — v(Cy) is A-measurable.

Suppose first that v is finite and let G be the class of all sets C € A ® B such that
the function x — v(Cy) is A-measurable. Then,

¢ G contains all measurable rectangles: if C = A x B, v(Cy) = 14(x)v(B).

* Gisamonotoneclass: if C, C’ € Gand C C C’, we have v((C\C"),) = v(Cy)—
v(C%) (here we use the finiteness of v), and it follows that C\C’ € G. Similarly,
if (Cy)nen is an increasing sequence in G, we have v((, ey Cn)x) = lim 7
v((Cy)yx) for every x € E, and therefore | J,,.y Cn € G.

By the monotone class theorem (Theorem 1.18), G contains the o -field generated by
the measurable rectangles, and so we must have G = A ® B. This gives the desired
measurability property for the mapping x > v(Cy).

In the general case where v is only o-finite, we consider the sequence (B;),eN
introduced in the uniqueness part of the proof. For every n € N, we may replace
v by its restriction to B,, which we denote by v,, and the finite case shows that
x = v,(Cy) is measurable. Finally, we just have to write v(Cy) = lim 1 v,(Cy)
forevery x € E.

The preceding discussion shows that the definition (5.2) of m(C) makes sense
for every C € A ® B. It is then easy to verify that m is a measure on A ® B : if
(Cn)nen is a sequence of disjoint elements of A ® B, the sets (Cy,)x, n € N are also
disjoint, for every x € E, and thus

(U ) = [ () ueo
neN E neN
= fE > v((C)x) p(dx)

neN

=> / V((Cp)x) p(dx)
E

neN

=Y m(Cn),

neN

where, in the third equality, we use Proposition 2.5 to interchange integral and sum.

It is immediate that m verifies the property m(A x B) = u(A)v(B) for every
A € Aand B € B. So we have proved the existence of a measure m satisfying the
properties in (i) and the first equality in (ii).
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Furthermore, we can use exactly the same arguments to verify that the function
y > u(C?) is B-measurable, for every C € A ® B, and that we can define a
measure m’ on E x F by the formula

m'(C) :=/F/L(Cy)v(dy)-

Since m’ satisfies the same property m’(A x B) = u(A)v(B), the uniqueness part
forces m = m’. It follows that m also satisfies the second equality in (ii) and the
proof of the theorem is complete. O

Remarks

(i) The assumption that u and v are o-finite is necessary at least for part (ii) of the
theorem. Indeed, take (E, A) = (F, B) = (R, B(R)). Let u = A be Lebesgue
measure and let v be the counting measure. Then if C = {(x, x) : x € R}, we
have C, = C* = {x} for every x € R, and thus

oo:/v(Cx)A(dx) ;Afx(cyw(dy) =0.

(i) Suppose now that we consider an arbitrary finite number of o-finite measures
U1, ..., Uy, defined on (Ey, Ap), ..., (E,, Ay) respectively. We can then
define the product measure ;1] ® --- Q@ upon (Ey X -+ x E, A1 ® ... Q A,)
by setting

UIR - Qupn=u Q (U2 ® (- R y)).

The way we insert parentheses is in fact unimportant since (1 ® --- ® Uy is
characterized by its values on (measurable) rectangles,

M@ up(Ar X -+ x Ay) = p1(A1) ... n(Ap).

Example 1f (E, A) = (F,B) = (R, B(R)), and & = v = A, one easily checks that
A ® A is Lebesgue measure on R? (just observe that Lebesgue on R? is characterized
by its values on rectangles of the form [a, b] x [c, d], again by a straightforward
application of Corollary 1.19). This fact is easily generalized to higher dimensions,
and we will use it without further comment in what follows. We may also observe
that it would have been enough to construct Lebesgue measure on the real line in
Chapter 3.
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5.3 The Fubini Theorems

We start with the case of nonnegative functions. As in the preceding section, we
consider two measurable spaces (E, .A) and (F, ), and the product £ x F is
equipped with the o-field A ® B.

Theorem 5.3 (Fubini-Tonelli) Let u and v be two o-finite measures on (E, A)
and on (F, B) respectively, and let f : Ex F —> [0, o0] be a measurable function.

(i) The functions
Es>sx— / f(x, y)v(dy),
F

Fay'—>/Ef(x,y)M(dx),

with values in [0, 00], are respectively A-measurable and B-measurable.
(ii) We have

ranoy = [ ([ ramvan)uo = [ ([ roonne)va.
ExF E F F E

Remark The existence of the integrals [ f(x, y) u(dx) and [, f(x, y) v(dy) is
justified by Proposition 5.1 (ii).

Proof

i) Let C ¢ A® B. If f = 1¢, we know from Theorem 5.2 that the
function x +— f rfx,y)v(dy) = v(Cy) is A-measurable, and similarly
y fE f(x,y)u(dx) = p(C?) is B-measurable. By a linearity argument
we obtain that (i) holds for every (nonnegative) simple function. Finally, for a
general nonnegative measurable function, f, Proposition 2.5 allows us to write
f =1lim 1 f,, where (f,)nen is an increasing sequence of nonnegative simple
functions. It follows that, for every x € E, the function f,(y) = f(x,y) is
also the increasing limit of the simple functions (f;,)x(y) = fn(x, y), and the
monotone convergence theorem gives

/Ff(x,y)V(dy)=limT/an(x,y)v(dy)-

Hence x — f r f(x,y)v(dy) is a pointwise limit of measurable functions and
is therefore also measurable. The argument is the same for the function y —

Je £ y) pn(dx).



5.3 The Fubini Theorems 91

(i) If f = 1¢, the desired formula reduces to

n@v(C) =/EV(Cx)M(dX)=[F/L(CX)V(dy),

which holds by Theorem 5.2. By linearity, we get that the formula also
holds when f is a nonnegative simple function. In the general case, we use
Proposition 2.5 (as in part (i) of the proof) to write f = lim f,, where (f;;)neN
is an increasing sequence of nonnegative simple functions, and we observe that
we have

[ ([ resvan)uao = tim 1 [ ([ g van)ua
ENJF n—oo JE NJF

by two successive applications of the monotone convergence theorem. Since
we have also [, fdu ® v = lim 1 [, fu du ® v, again by monotone
convergence, the desired formula follows from the case of simple functions. O

‘We now consider functions of arbitrary sign and derive another form of the Fubini
theorem. We let i and v be as in Theorem 5.3.

Theorem 5.4 (Fubini-Lebesgue) Let f € L'(E x F, AQ B, u ® v). Then:

(a) w(dx) a.e., the function y — f(x,y) belongs to L' (F, B, v),
v(dy) a.e., the function x — f(x,y) belongsto L'(E, A, ).

(b) The functions x +— [ f(x,y)v(dy) and y — [p f(x,y)u(dx) belong to
LY(E, A, ) and L' (F, B, v) respectively.

(c) We have

ranev=[ ([ reyvan)uao = [ ([ reoua)va.
ExF E F F E

Remarks

(1) In(b), the function x +> f r f(x, y) v(dy) is only defined (thanks to (a)) outside
a measurable set of values of x of zero u-measure. We can always agree that
this function is equal to O on the latter set of zero measure, and similarly for the
function y > [ f(x, y) u(dx).

(ii) The same statement holds for a function f € ﬁé:(E x F,A® B, u ® v) with
the obvious adaptations (in fact we just have to deal separately with the real and
the imaginary part of f).
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Proof

()

(b)

(©

By Theorem 5.3 applied to | f|, we have

/(/ |f(X,)’)|V(d}’))lL(dx)=/|f|du®v<oo.
ENJF

Thanks to Proposition 2.7 (2), this implies that f r 1 f G »)v(dy) < oo, u(dx)
a.e. Thus the function y — f(x, y) (which is measurable by Theorem 5.1)
belongs to L1 (F, B, v), except for x belonging to the .A-measurable set

Ni={xek: / £ »lvy) = ocl,
F

which has zero pu-measure. The same argument applies to the function x

S, y).

If x € N€, fF f(x, y)v(dy) is well defined since the the function y — f(x, y)
is v-integrable. As already mentioned in the remark following the theorem, we
agree that fF f(x,y)v(dy) = 0if x € N. Then the function

x> /f(x,y)V(dy)= lNr(X)/f+(x,y)v(dy)—lNc(X)/f_(x,y)v(dy)

is A-measurable by Theorem 5.3 (i), and we have also, thanks to part (ii) of the
same theorem,

L[ remvanfueo < [ ([ irammvan)ae=[ifauer <.
E'JF E F

This proves that the function x > [ f(x, y) v(dy)isin L!(E, A, n). The same
argument applies to the function y f g f(x,y) p(dx).
Theorem 5.3 gives the two equalities

/(/ [T y) v(dy)),u(dx):/ frdu®v,
ENJF ExF

/(/ f’(x,y)V(dy))u(dX)=f fdu®v,
E F ExF

and we can replace the integral over E by an integral over N€ in the left-hand
sides of these formulas. Then we just have to subtract the second equality from
the first one (using part (b)), in order to arrive at the first equality in (c), and the
second equality is derived in a similar manner. O

In what follows, we will refer to either Theorem 5.3 or Theorem 5.4 as “the

Fubini theorem”. It will be clear which of the two statements is considered.
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Remark The assumption f € £' (1 ® v) in Theorem 5.4 is crucial. It may indeed
happen that both (a) and (b) hold, so that the quantities

[ ([ revan)uaoad [ ([ soon @)
E F F E

are well defined, but the formula in (c) does not hold! To give an example, consider
the function

floy) =207 — e

defined for (x, y) € (0, c0) x (0, 1]. Then, for every y € (0, 1],

(0.¢] [e¢)
/ S, y)dx = 2/ e 2Vdx — / e dx =0
(0,00) 0 0

and for every x € (0, 00),

1 1 e ¥ — e—2x
/ fx, y)dy = 2/ e Vdy — / e Vdy = .
0,1] 0 0 x

We then see that

/(0,1] (/(O,OO) fGxy) dx)dy =0

whereas

Pe ™t —e
f ([ fendy)dr= f dx > 0.
(0,00) (0,1] 0 X

This is not a contradiction with Theorem 5.4, because

/ £ (r, )] dxdy = oo
(0,00)x(0,1)

(to see this, note that there exists a constant ¢ > 0 such that f(x,y) > cif x <
1/(8y) and use [} y~'dy = o00).

In practice, one should remember that the application of the Fubini theorem
is always valid for nonnegative functions (Theorem 5.3) but that, in the case of
functions of arbitrary sign, it is necessary to verify that

/|f|du®v<oo.

Most of the time this verification is done by using the case of nonnegative functions.
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Notation When the application of the Fubini theorem is valid (and only in this
case), we often remove parentheses and write

/fdu®v=/ / fx, y) u(dx)v(dy).
EJF

5.4 Applications

5.4.1 Integration by Parts

In this section, we extend the classical integration by parts formula for the Riemann
integral. Let f and g be two measurable functions from R into R. Suppose that
f and g are locally integrable, meaning that the restriction of f (or of g) to
any compact interval of R is integrable with respect to Lebesgue measure on this
interval. Then set, for every x € R,

[ N fou f0 A ifx =0
e _/0 s = {—f[x’o]f(t) drifx <0

Gx) = /x g(t)de.
0

With this notation, we have F(b) — F(a) = f ab f()dt for every a,b € R with
a < b, and the similar formula for G(b) — G(a). The integration by parts formula
states that

b b
F(b)G(b) = F(a)G(a)—i—/ f(t)G(t)dt—i—/ F()g(t)dr.

Let us justify this equality, which is easily seen to be equivalent to

b b
/ FO(G () — G(a))dt =/ (F(b) = F(1))g(r)dt.

To establish the latter identity, we write

b b t
f FOG® — Gy dr = f r( / g(s)ds )ds

b b
=[ (f l{sst}f(t)g(s)ds>dt
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_ /ab (/ab 1{s§,}f(t)g(s)dt>ds
_ /hg(s)(/bf(t)dt)ds

b
= f g(s)(F(b) — F(s))ds.
a
In the third equality, we have applied Theorem 5.4 to the function

@(s, 1) = Ls<y f(2)g(s)

noting that, thanks to Theorem 5.3, we have

f |(p(s,t)|dsdt§/ |f<z>||g<s>|dsdr=(/ If(t)ldt)(/ 5()lds) < oo.
[a,b]? [a,b]? [a,b] [a,b]

5.4.2 Convolution

Throughout this section, we consider the measure space (R?, B(RY), 1). Let f and
g be two real measurable functions on R?. For x € R?, the convolution

fxgx)= / fx—y)g(y)dy
]Rd

is well defined provided

/ [f(x —y)g(Idy < oo.
Rd

In that case, the fact that Lebesgue measure on R is invariant under translations
and under the symmetry y — —y shows that g % f(x) is also well defined and

gx fx)=f*g).

Proposition 5.5 Ler f € L'(R?, B(RY), 1) and g € LP(RY, B(R?), 1), where
p € [1,00). Then, for  a.e. x € RY, the convolution f % g(x) is well defined.
Moreover f x g € LP(RY, BIR?), 3) and || f * gllp < I fl1llgllp-

Remark Again, we may agree that, on the set of zero Lebesgue measure where f g
is not well defined, we take f % g(x) = 0.

Proof We leave aside the case p = 0o, which is easier (and where stronger results
are proved in Proposition 5.6 below). We assume that || f]|; > 0, since otherwise
the results are trivial. Since the measure with density || f ||1_1 | f (x)]| with respect to
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A is a probability measure, Jensen’s inequality gives, for every x € RY,

, FOD \
_ d _ P / _ d
(/Rdlg(x MIFWIdy)” = 1717 ( ISRl R )

< ||f||{"1f lg(x — MIP 1 £ ()] dy.
Rd

Using Theorem 5.3, we have then

L (L e =mnisonas) e <ing™ [ ([ e =nrirona)as
Rd Rd Rd R4
=0t [ ([ 1800 1= iy e
Rd Rd

=™ [ e ([ 176 = piax)ay
R4 R4

=I1F17 llglp

< 00,

which shows that
/ |f(x —1)||g(®)|dt < oo, A(dx) a.e.
Rd

and gives the first assertion. The second one also follows since the previous
calculation gives

[irsserars [ ([ s -nisola) e < isig s o
R4 R4 R4

The next proposition gives another important case where the convolution f * g
is well defined and enjoys nice continuity properties.

Proposition 5.6 Let p € [1, 00) and g € (1, 0o] be conjugate exponents ( [17 + ; =
1). Let f € LP(R?, B(RY), 1) and g € L1(RY, B(R?), A). Then, the convolution
f*g(x) iswell definedand | fxg(x)| < || fllpligllg, for every x € R<. Furthermore,
the function f x g is uniformly continuous on R®.

Proof By the Holder inequality,

I/p
[ s =meonay = ([ 1re=niras) el = 171l
R4

This gives the first assertion and also proves that f * g is bounded above by
lfllpligllg. To get the property of uniform continuity, we use the next lemma.
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Lemma 5.7 Set 0,(y) = y — x for every x,y € R Let p € [1,00) and f €
LP (R4, B(RY), 1), Then the mapping x — f o oy is uniformly continuous from R?
into LP (R4, B(R?), 1).

Given this lemma, it is easy to complete the proof of the proposition. Indeed, for
every x, x’ € RY,

|f () — fxg(x))] < / |fx=y) = f&"=»lgldy

1/p
<ty ([ 170 =) = 70 = yora)
=ligllg If oo—x — foo_xlp
and we use Lemma 5.7 to say that || foo_, — foo_y/||, tends to O when x —x” — 0.
O

Proof of Lemma 5.7 Suppose first that f belongs to the space C.(RY) of all real
continuous functions with compact support on R?. Then,

IIfoax—foay||§=fIf(z—X)—f(z—y)I”dz=/|f(z)—f(z—(y—X))|”dz

which tends to 0 when y — x — 0 by an application of the dominated convergence
theorem. In the general case, Theorem 4.8 (3) allows us to find a sequence ( f;;)neN
in C.(R?) that converges to f in L? (R4, B(R%), A). Then, for every x,y € R,

I foox—fooaylp
<\ foox— fa Oax”p + 1 fuoox — fa OO—y”p + I fu o0y — foay”p
=2|f — fn”p + I fnoox — fa OUy”p-
Fix ¢ > 0 and first choose n large enough so that || f — f.ll, < &/4. Since f, €
C.(R%), we can then choose § > 0 such that | fuoox— fuooyllp < &/2if [x—y| < 4.

The preceding display then shows that || f o o6y — f ooyl < eif |x — y| < 8. This
completes the proof. O

Approximations of the Dirac Measure Let us say that a sequence (¢;),eN Of
nonnegative continuous functions on R? is an approximation of the Dirac measure
8o if:

e Foreveryn € N,

/ @n(x)dx = 1. (5.3)
R4
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e Forevery$ > 0,

lim on(x)dx = 0. (5.4)

00 Jx|>8)

It is easy to construct approximations of &p. If ¢ is any nonnegative continuous
function on R? such that f @(x)dx = 1, we can set ¢, (x) = nd(p(nx) for every
x € R? and every n € N. Note that, if we start from a function ¢ with compact
support, all functions ¢, will vanish outside the same closed ball.

Proposition 5.8 Let (¢,),eN be an approximation of the Dirac measure 3.

(i) For any bounded continuous function f : R — R, the sequence ¢, % f
converges to f asn — 0o, uniformly on every compact subset of R%.
(ii) Let f € LP(R?, B(RY), 1), where p € [1, 00). Then, g, % f —> f in LP.

Proof

(1) First note that ¢, * f is well defined since ¢, is integrable and f is bounded.
Then, we have, for every 6 > 0,

on % () — FQ2) (5:5)
= / a(f(x -y - f(x))wn(y)der/
Y=

(f(x = y) = f(x))gn(y)dy.

[y[>é
Fix ¢ > 0 and a compact subset H of R?. Since f is uniformly continous on
any compact subset of R, we can choose § > 0 such that | f(x —y)— f(x)| < &
for every x € H and y € R? such that |y| < §. Recalling (5.3), we get that the
first term in the right-hand side of (5.5) is smaller than ¢ in absolute value, for
every x € H and n € N. Furthermore, (5.4) and the boundedness of f show
that the second term in the right-hand side of (5.5) tends to O when n — oo,
uniformly when x varies in R4 1t follows that we have lon* f(x)— f(x)] < 2¢
for every x € H, as soon as n is sufficiently large..

(ii) The fact that ¢, * f is well defined A a.e. and belongs to L? follows from
Proposition 5.5 since ¢, is integrable. We then observe that

[100x 500 = reorar = [ ([ omlre == reiy) a
= [([enise =y - seoray)as
= [ ([emise =y = rwirac)ey

= [en( [ 156 =)= reorrar)ay
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where the second inequality is a consequence of Jensen’s inequality (note that
¢ (y)dy is a probability measure), and the next equality uses Theorem 5.3. For
every y € RY, set

h(y) =/If(x — ) = f@IPdx = |If ooy — [l

with the notation of Lemma 5.7. The function 4 is bounded and A (y) —> 0 as
y — 0 by Lemma 5.7. It then immediately follows from (5.3) and (5.4) that

tim [ 6,040 dy =0,
n—o0
This completes the proof. O

Application In dimensiond = 1, we can take
Pn(x) = cn(1 — x)" 1y )<t

where the constant ¢,, is chosen so that f @ (x)dx = 1. Then let [a, b] be a compact
subinterval of (0, 1), and let f be a continuous function on [a, b]. It is easy to extend
f to a continuous function on R that vanishes outside [0, 1] (for instance, take f to
be affine on both intervals [0, a] and [b, 1]). Then the preceding proposition shows
that

Pn ¥ f(x) = cn /(1 = =) oy f Oy —> f()

uniformly on [a, b]. If x € [a, b], we can remove the indicator function 1{x—y <1}
in the last display, since the conditions x € [a, b] and |x — y| > 1 force f(y) = 0.
It now follows that f is a uniform limit of polynomials on the interval [a, b] (this is
a special case of the Stone-Weierstrass theorem).

5.4.3 The Volume of the Unit Ball

In this section, it is convenient to write A4 for Lebesgue measure on R4, in order to
keep track of the dimension. We denote the closed unit ball of R¢ by By. Our goal
is to compute the volume y; = Ay (By) of B4. As we already observed in Chapter 3,
for every a > 0, the pushforward of A4 under the mapping x > ax is a~%14. In
particular, we have

ra(aBg) = a®ra(By).
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Then, using Theorem 5.3 and assuming that d > 2, we have
Vd = /Rd 1, (x)dx = /Rd 1{x12+~~~+x§§1}dx1 ...dxg

1
1

= / )»dfl(\/l — xd2 Bdfl) dxg
-1

1
= Va1 / (1 —xp) D2 dxg
—1

= vyi-11a—1

where we have set, for every integer n > 0,

1
I, =[ (1 — x>)"?dx.
-1

An integration by parts shows that, if n > 2,

"o
n+1 n=2

I,

Using the special cases Iy = 2, I} = m /2, we get by induction that, for every integer
d>?2,

2
Iy 1142 = d

Consequently, for every d > 3,

27

=1y _11;_ =
Yd d—11d-2Yd—-2 d

Yd-2.
From the special cases y; = 2, y» = y111 = m, we conclude that, for every integer
k>1,

7k 7k

: Vok41 = . (5.6)
k! (k+§)(k—§)~-~§-%

V2k =

A reformulation of these formulas in terms of the Gamma function will be given in
Section 7.2 below.
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5.5 Exercises

Exercise 5.1 Let (E, .A) be a measurable space and let i be a o -finite measure on
(E, A). Let f : E — R, be a nonnegative measurable function. Prove that

/Efdu=/0 w(lx € E: f(x) = 1)) dr,

and more generally, if g : Ry — Ry is a continuously differentiable increasing
function such that g(0) = 0,

/EgOfdu=/0 n(fx € E: f(x)>1})g'(r)dr.

Exercise 5.2 Let f : R —> R be a Borel measurable function. Prove that, for A
ae.y € R, theset {x € R: f(x) = y} has Lebesgue measure 0.
Exercise 5.3 Let f and g be two real functions defined on a compact interval / of

R. Assume that f and g are both increasing or both nondecreasing. Prove that, if ©
is any probability measure on (I, B(1)),

flfgduz /IfdMX/Igdu-

(Hint: Consider the function F(x, y) = (f(x) — f(y)(gx) —g(y)).)
Exercise 5.4 For every x, y € [0, 1] such that (x, y) # (0, 0), set

x2—y?

FED= 2 gy

Also set F(0, 0) = 0. Verify that the two quantities

/01 (/01 F(x,y)dy)dx, /01 (/01 F(x,y)dx)dy

are well defined, and compute them explicitly. What can you infer about the value
of

[, e vl
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Exercise 5.5 Compute in two different ways the integral

1
/ 5., dxdy
r2 (1+y) (1 +x%y)

and deduce that

/OO log x n?
dx = .
0 x2—1 4

1 1 x2

Hint: Write = - .
I+yA+x2y)  A-x)A+y) A —x2)1+x2y)

Exercise 5.6 Let (X, X) and (Y, )) be two measurable spaces, and let u and
v be two o-finite measures on (X, X) and (Y,)) respectively. Let ¢ be a
nonnegative X ® Y-measurable function on X x Y. For every x € E, let F(x) =

[y o(x. y) v(dy).
(1) Let p € [1, 00). Verify the inequality

11l S/;/”(/J('vy)”p v(dy)

where ¢ (-, y) stands for the measurable function x +— ¢(x, y) defined on X,
and || - ||, refers to the measure u on X. (Hint: Consider first the case where
and v are finite and ¢ is bounded, and write F? = F x FP~1)

(2) Suppose now that p > 1, and let f € L” (R4, B(R4), A). Forevery x > 0, set

1 X
F(x):x/O £t)dt.

Use the result of question (1) to give a new proof of Hardy’s inequality of
Exercise 4.7,

p
11y = b1 A1 p

(Hint: Consider ¢(x, y) = | f(xy)| fory € [0, 1].)

Exercise 5.7 Prove that the convolution operation acting on L L(R, B(R), 1) has no
neutral element (one cannot find a function f € L' (R, B(R), A) such that fxg = g
forevery g € L' (R, B(R), 1)).

Exercise 5.8 Let p € [1,00) and let ¢ € (1, oo] be the conjugate exponent of p.
Let f € LP(R, B(R), A) and g € LY(R, B(R), 1).
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(1) Suppose that p > 1. Prove that
lim f*g(x)=0.
|x]—00

Hint: Use the density of continuous functions with compact support in L7, cf.
Chapter 4.

(2) Consider the case p = 1,q = oo. Show that the conclusion of question (1)
remains true if we assume that lim|x|—. o0 g(x) = 0, but may fail without this
assumption.

Exercise 5.9

(1) Let A be a Borel subset of R such that 0 < A(A) < oo. Using a suitable
convolution, show thatthe set A — A = {x —y : x € A,y € A} contains a
neighborhood of 0.

(2) Let f : R — R be a Borel measurable function such that f(x +y) = f(x) +
f(y) for every x, y € R. Using question (1), show that f is bounded on a
neighborhood of 0. Infer that f is continuous at O, and then that f must be a
linear function.



Chapter 6 )
Signed Measures s

In contrast with the preceding chapters, we now consider signed measures, which
can take both positive and negative values. The main result of this chapter is
the Jordan decomposition of a signed measure as the difference of two positive
measures supported on disjoint sets. We also state a version of the Radon-Nikodym
theorem for signed measures, and, as an application, we prove an important theorem
of functional analysis stating that the space L is the topological dual of L? when p
and g are conjugate exponents and p € [1, oo). We conclude this section by stating
another version of the Riesz-Markov-Kakutani theorem, which (under appropriate
assumptions) identifies the space of all finite measures on E with the topological
dual of the space Cy(E) of continuous functions that vanish at infinity.

6.1 Definition and Total Variation

Throughout this chapter, Section 6.4 excepted, (E, A) is a measurable space. Let us
start with a basic definition.

Definition 6.1 A signed measure  on (E, A) is a mapping  : A —> R such that
w(2) = 0 and, for any sequence (A, ),en of disjoint A-measurable sets, the series

> (A

neN
is absolutely convergent and

n(UAn) =3 mcan.

neN neN
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106 6 Signed Measures

To avoid confusion with the previous chapters, we will always include the
adjective “signed” when we consider a signed measure (when we just say “measure”
we mean a positive measure). Plainly, a signed measure is finitely additive since we
can always take A, = & for n > ny.

Remark A positive measure v on (E, A) is a signed measure only if it is finite

(v(E) < 00). So signed measures are not more general than positive measures.

Theorem 6.2 Let i be a signed measure on (E, A). For every A € A, set

IL|(A) = sup{ Dol A=J A Ay e A 4, disjoint}
neN neN

where the supremum is over all representations of A as a countable disjoint union
of A-measurable sets (Ap)nen. Then || is a finite (positive) measure on (E, A),
and | (A)| < [u|(A) for every A € A,

The measure || is called the total variation of the signed measure ji.

Proof We first prove that || is a measure. It is obvious that |u|(@) = 0. Then
let (B;);en be a sequence of disjoint .A-measurable sets and set B = Ul- en Bi- Fix
i € N. By definition, if #; € [0, |i|(B;)) (or ; = 0 in case |u|(B;) = 0), we can
write B; = |, <y An,i as a countable union of disjoint .A-measurable sets, in such
a way that

> Al = 1.

neN

Since the collection (A ;)x.ieN is countable and B is the disjoint union of the sets
in this collection, we have

l(B) = Y Y Iu(Ani)| = Y ti.

ieNneN ieN

However each #; can taken arbitrarily close to |i|(B;), and it follows that

[ul(B) = Y |ul(B)).

ieN

Note that the argument also works if ||(B;) = oo for some i, which we have not
excluded until now.
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To get the reverse inequality, let (A;),cN be a sequence of disjoint .4-measurable
sets whose union is B. Then, for every n € N, A, is the disjoint union of the sets
A, N B;, i € N, and therefore the definition of a signed measure gives

>l = | Y unn By

neN neN ieN

<> In(A N B

neNieN

=Y > lu(A, N By

ieNneN

<> lul(By),

ieN

where the last inequality follows from the definition of ||(B;) as a supremum (the
sets A, N B;, n € N, are disjoint and their union is B;). By taking the supremum
over all choices of (A;),cN, We get

lul(B) < |ul(B)
ieN

which completes the proof of our claim that |u| is a measure.
The inequality | (A)| < ||(A) is obvious from the definition of | |(A). So it
only remains to verify that || is a finite measure. We rely on the next lemma.

Lemma 6.3 Suppose that there exists A € A such that |u|(A) = oo. Then one can
find two disjoint A-measurable sets B and C such that A = BUC and |u(B)| > 1,
|1l (C) = oo.

Proof of Lemma 6.3 Since |i|(A) = oo, we can write A = [ J,cy An Where the
sets A, are A-measurable and disjoint, and

Z I (An)| > 2(1 + [ (A)]).

neN

At least one of the two inequalities

3 At > 1+ u(A))]
neN

and

3 (AT > 1+ u(A))]

neN
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must then hold. Suppose that the first one holds (the other case is treated in a similar
manner). We then set

B=UAn

{n:u(An)>0}

in such a way that

W(B) =D (AT > 1+ |u(A)l.
neN

Moreover, if C = A\B,

(O] = |u(A) = w(B)| = [w(B)| — [n(A)| > 1.

On the other hand, since A = B U C and || is a measure we have |u|(B) = oo or
|| (C) = oo, which gives the desired result up to interchanging the roles of B and
C if necessary. This completes the proof of the lemma. O

Let us now complete the proof of Theorem 6.2. We argue by contradiction and
suppose that || (E) = co. From Lemma 6.3 applied to A = E, we can find disjoint
measurable sets By and Cyp such that | (Bg)| > 1 and |u|(Cp) = oo. But then, we
can also apply Lemma 6.3 to A = C¢ and we find disjoint measurable sets B and
Cj such that Co = By U Cy, |w(B1)| > 1 and |u|(C1) = oo. By induction, we
construct a sequence of disjoint measurable sets (Bj,),eN, such that | (B,)| > 1 for
every n. This contradicts the fact that the series

> (B
neN
has to be absolutely convergent, by the definition of a signed measure. This

contradiction completes the proof. O

Example Let v be a (positive) measure on (E, A), and g € L1(E, A, v).Then the
formula

w(A) ::/gdv, Ae A,
A

defines a signed measure. In fact, if A is the disjoint union of a sequence (A;)eN
of measurable sets, the bound |t (A,)| < f A, |g| dv, together with Proposition 2.5
(3), shows that the series ),  |it(A,)| converges (its sum is bounded above by
[ 1gldv) and then the equality

1(A) =" (A

neN
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follows by observing that

14 = lim 14 inL',
§14 k%oogz An

n<k

which holds by the dominated convergence theorem. We will see later that we have
|| = |g| - v in that case, with the notation of Theorem 4.11.

6.2 The Jordan Decomposition

It is obvious that the difference of two finite (positive) measures is a signed measure.
Conversely, if p is a signed measure on (E, A), one immediately checks that the
formulas

1A = (w(A) + |1l (A)),

N = N =

n(A) = _(lnl(A) — n(A)),
for every A € A, define two finite positive measures on (E, A). Moreover, i =
pt —p~and |ul = put +p.

Recall the notation g - v in Theorem 4.11.
Theorem 6.4 (Jordan Decomposition) Let u be a signed measure on (E, A).
There exists a measurable subset B of E, which is unique up to a set of | u|-measure
zero, such that u = 1p - || is the restriction of || to B and p~ = 1ge - || is the
restriction of || to B€. Moreover, we have, for every A € A,

A =p " (ANB)=u(ANB), pu (A)=p (ANB)=—u(AN B,
and consequently

u(A) =p"(ANB) —n (AN BY),
lil(A) = uF (AN B) + 1~ (AN B°).

Proof From the bound |u(A)| < |u|(A), we have ut(A) < |u|(A) and u~(A) <
|| (A) for every A € A. In particular 4T and ™ are absolutely continuous
with respect to |u|. By the Radon-Nikodym theorem, there exist two measurable
functions 41 and h, with values in [0, oo) such that u™ = hy-|u|and u™ = ha-|u|.
Note that /1 and hy are |p|-integrable.
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We have then, for every A € A,
M(A)=u+(A)—M_(A)=/h1dlul—/hzdlul=/hdIMI,
A A A

where h = hy—hy. Let i’ and " be the (positive) measures defined by ' = h™-|u|
and u” = h™ - |u| and note that we have also u(A) = u'(A) — u”(A) for every
A € A, by the formula in the last display. Let B = {x € E : h(x) > 0}, so that
w' (BY) =0and u”(B) =0.Forevery A € A,

1'(A) = / htd|pl =/ htd|pl =/ hdu = (AN B)
A ANB ANB

and similarly u”(A) = —u(A N BY).

We claim that we have also |u|(A) = u'(A) + u’(A) for every A € A. The
lower bound | |(A) > p/(A) + p”’(A) is immediate since u'(A) = u(A N B) and
w”(A) = —u(ANBC) and we just use the definition of |w|. To get the corresponding
upper bound, consider a disjoint sequence (A, ),eN of measurable sets whose union
is A. Then,

S luAn] < Y (u(An 0 B + (A, O B

neN neN

=) (' (An) + 1" (An))

neN
= 1'(A) + u"(A).

Since this holds for any choice of the sequence (A, ), <N, the definition of || shows
that ||(A) < w'(A) + u”(A), which completes the proof of our claim.

Next, since we have both u(A) = u'(A) — n’(A) and |u|(A) = u/'(A) + u’(A)
for every A € A, we immediately get that ' = u* and u” = ™. We have then,
forevery A € A,

II(ANB) = (ANB) +u (AN B) = u" (AN B) = u*(A)

because = (B) = w’(B) = 0 and u™(B€) = u/(B€) = 0. It follows that u™ is
the restriction of || to B, and we get similarly that p™ is the restriction of || to
B¢. The formulas stated in the lemma also follow from our discussion. Finally, the
uniqueness of B is a consequence of the uniqueness of g in Theorem 4.11. O

Remark If © = w1 — w2 is another decomposition of w as the difference of two
(finite) positive measures, we have necessarily ;1 > ™ and us > ™. In fact, for

every A € A,

1i(A) = ui(ANB) = w(ANB) = " (AN B) = n*(A).
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Integration with Respect to a Signed Measure Let u be a signed measure and let
w =t — u~ beits Jordan decomposition. If f € L1(E, A, |1]), we set

[ raws= [ ot~ [ raw = [ ran - taain

It is then immediate that
[ rau] = [1riain

Proposition 6.5 Let v be a positive measure on (E, A). Let g € L'(E, A, v) and
let u = g - v be the signed measure defined by

uw(A) :=/gdv, Ae A
A

Then || = |g| - v. Moreover, for every function f € LY(E, A, |i1|), we have fg €

LY(E, A, v)), and
[ rau= [ sean

Proof The fact that p is a signed measure was already explained in the example at
the end of Section 6.1. Then, let B be as in Theorem 6.4. We have, for every A € A,

IMI(A)=M(AQB)—M(AQBC)=f gdv—/ gdv:/ghdv,
ANB ANBe A

where we have set h = 13 — 1pc. Taking A = {x € E : g(x)h(x) < 0}, we infer
from this equality that gh > 0, v a.e. Hence gh = |gh| = |g|, v a.e., so that

Il (A) = / lgldv,
A

and we have proved that |1| = |g|-v. It readily follows that we have also u* = g*-v
andu™ =g~ -v.
Then, by Proposition 2.6, if f € LYE, A, 1)),

/IfIIgIdV=/IfIdIM|<OO

and thus fg € L£'(v). The equality [ fdu = [ fgdv then also follows from
Proposition 2.6 by decomposing f = f* — f~and u = pu* — pu~. o
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The Radon-Nikodym Theorem for Signed Measures Let v be a positive mea-
sure, and let o be a signed measure. We say that p is absolutely continuous with
respect to v, and we write u < v, if

VAe A, v(A)=0= u(A) =0.

Theorem 6.6 Let 1 be a signed measure, and let v be a o-finite positive measure.
The following three properties are equivalent.

D u<Lv.
(ii) For every ¢ > 0, there exists § > 0 such that

VAe A, v(A) <= |ul(A) <e.

(ili) There exists g € L'(E, A, v) such that

VA € A, M(A):/gdv.
A

Proof (ii))=-(i) is immediate. Let us show that (i)=(iii). If © <« v, we have also
uT <« v, since with the notation of Theorem 6.4,

V(A)=0=v(ANB)=0= u"(A) =u(ANB) =0.

Similarly, ©~ <« v. Thus the Radon-Nikodym theorem for positive measures
(Theorem 4.11) allows us to write u* = g; - v and 4~ = g - v where g; and
g» are nonnegative measurable functions such that f g1dv = ut(E) < oo and
[ g2dv = u~(E) < oo. (iii) follows, with g = g| — £».

It remains to show that (iii)=>(ii). This is very similar to the proof of Propo-
sition 4.12. Assume that (iii) holds. By Proposition 6.5, we have |u| = |g| - v.
Moreover, the dominated convergence theorem gives

lim lgldv = 0.

=0 Jigl=n)

Hence, if ¢ > 0 is fixed, we can choose N large enough so that

£
/ lgldv <
{lg|=N} 2

Then, taking § = ¢/(2N), we have, for every A € A such that v(A) < 4§,

& &
|“|(A)=/ |g|dv§/ |g|dv+/ lgldv= _+N =s.
A {Ig1=N} An{|g|<N} 2 2N

This completes the proof. O
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6.3 The Duality Between L? and L4

Let v be a o-finite (positive) measure on (E, A). Let p € [1, co] and let g be the
conjugate exponent of p. Then, if we fix g € LY(E, A, v), the formula

(/) = / fodv

defines a continuous linear form on L?(E, A, v). Indeed, the Holder inequality
shows on one hand that @, (f) is well defined (fg is integrable with respect to
v), and on the other hand that

1Pe(NI = Collfllp. Vf e LP(E, A ),
where C; = | gll4. We also get that the operator norm of @,, which is defined by

IPg |l := sup{|@g (/)] : f € LP(E, A, v), [ fllp <1}

satisfies the bound || @ || < |Igll4-

One may then ask whether all continuous linear forms on L?(E, A, v) are of
the preceding type. In the special case p = g = 2, we know from the theory of
Hilbert spaces that the answer is yes. The next theorem shows more generally that
the answer is yes when p < oo.

Theorem 6.7 Let v be a o-finite measure on (E, A), let p € [1,00) and let
q be the conjugate exponent of p. Then, if @ is a continuous linear form on
LP(E, A, v), there exists a unique function g € L1(E, A, v) such that, for every
feLP(E,Av),

(f) = / fgdv.
Moreover, the operator norm of @ is

2l =lglg-

With the notation introduced before the theorem, we thus see that the mapping
g +> @, identifies L9(v) with the topological dual of L”(v) (that is, the linear
space of all continuous linear forms on L” (v) equipped with the operator norm, see
the Appendix below). When p = oo, the mapping g — @, still makes sense from
L'(v) into the dual of L (v), but, as we will explain later on an example, there
may exist continuous linear forms on L°°(v) that cannot be written as @, for some
g€ L'(v).
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Proof Suppose first that v(E) < oco. Then, for every A € A, set
n(A) = @(14),

which makes sense since indicator functions belong to L” (v) when v is finite. The
first step of the proof is to verify that A > ©(A) is a signed measure on (E, A).
It is trivial that « (&) = 0. Then let (A,),en be a sequence of disjoint measurable
sets, and let A be the union of the sets A,, n € N. Then,

k
1Ia=1 1
4= lim )
n=

and convergence holds in L? (v) by dominated convergence. Using the fact that @
is continuous, we get

k k
p(a) = Jim &(314,) = Jim 3 (A, 6.1
n=1 n=1

We can use this to verify that the series ), (A,) is absolutely convergent. In
fact, replacing the sequence (An)nen by the sequence (A)),en defined by setting
A, = A, if u(A,) > 0and A), = @ otherwise, we have

k

> nay = tim 1 Y uay =u( U 4)).

neN n=1 neN

where the second equality holds by (6.1). It follows that ), eN wANT =
Y nen M(A}) < oo, and one similarly obtains that ) u(A,)” < oo. Once
we know that the series ), . i(A,) is absolutely convergent, the equality j.(A) =
> en M (Ay) follows from (6.1), and we have proved that w is a signed measure.

If A e Aand v(A) = 0, we have 14 = 0 in L?(E, A, v) and thus u(A) =
@ (14) = 0. Therefore © < v and Theorem 6.6 shows that there exists a function
g € L'(E, A, v) such that

VAe A, CD(IA)zu(A)zfgdv.
A
The equality
o) = [ reav

then holds when f is a simple function. We claim that it also holds if f is only
measurable and bounded (which implies f € L”(v) since v is finite). In that case,
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Proposition 2.5 (1) applied to both f* and f~ allows us to find a sequence (f;)nen

of simple functions such that | f,,| < |f| and f;, — f pointwise as n — oo. Using

dominated convergence, it follows that f, — f in L”(v), so that @(f;) —

@(f). Since we have also f fngdv — f fg dv, again by dominated convergence,

our claim follows by passing to the limit n — oo in the equality @ (f;) = f Jagdv.
Let us now show that g € L9 (v).

e If p =1, then, forevery A € A,
\/ gdv| = 12| < 9] 14111 = 9] v(A)
A

which easily implies that |g] < ||@]|, v a.e. (apply the last display to A = {g >
@Il +ebor A={g < —||P|l —¢}),and thus [|g[loc < [|P]|.

e If p e (1,00),weset F, = {x € E : |g(x)| < n} for every n € N, and then
hn, =1F, |g|‘1’1 (1g>0) — 1{g<0)). Since h, is bounded, we have

1/p
|g|qdv=/hngdv:q>(hn>s||<1>|| ||hn||p:||<1>||(/ gl7dv) ",
Fn F"

hence

([ 1eav)” <101,

n

Letting n tend to 0o, we get by monotone convergence that ||g|l; < [P ]

So in both cases we have obtained that g € L7(v) and | gll; < [|®]|. Using the
notation @, (f) = f fg du introduced before the theorem, we get that @ and @, are
continuous linear forms on L? (v), which coincide on the dense subset of bounded
measurable functions (cf. Theorem 4.8). It follows that @ = ®,. As explained
before the statement of the theorem, we have || @ || = || P, || < llgll4, by the Holder
inequality. The reverse inequality ||@|| > ||g[l, has been obtained above, so that we
get ||@|| = |lglly. Finally, the mapping g +— P, is linear and is an isometry from
L7 (v) onto the topological dual of L” (v). This mapping is necessarily one-to-one,
which gives the uniqueness of g in the theorem. This completes the proof in the case
where v is finite.

It remains to consider the case when v(E) = o0. In that case, write E as the
union of a sequence (E,),cnN of disjoint measurable subsets such that v(E,) < oo
for every n € N. Let v, be the restriction of v to Ej,. Then the mapping f +— f1g,
yields an isometry from L”(v,) onto a subspace of L”(v). Replacing v by v,, we
can apply the first part of the proof to the continuous linear form @, defined on
L?(vy) by

Pu(f) = P (f1E,).
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It follows that there exists a function g, € L9(v,) such that, for every f € L?(v,),

@(f1Eg,) = ®n(f) =/fgn dv,.

Up to replacing g, by g,1E,, we may assume that g, = 0 on E}, (more formally, we
just say that the equivalence class of g, in L?(v,) contains a function that vanishes
outside E,), and then rewrite the preceding display as

O(flp,) = / Fan dv,

forevery f € LP(v).
If f € L?(v), the dominated convergence theorem gives

k
f=Jlim 3 f1g, inLP(),
n=1
and this implies

k
o) = fim [ 1(3 ). (62)
n=1

On the other hand, we have

ff(Zk:gn)dV=¢(kale,,) <12 11£1p- (6.3)
n=1 n=1

We can then apply the same arguments that we used in the case v(E) < oo (when
we were establishing the bound || g|l; < [|®|]). In particular, when p € (1, c0), we

apply (6.3) t0 f = | 35_; gl sgn(Xh_ ga), where sgn(y) = 1iy=0) — Ly <o)
In this way, we derive from (6.3) that, for every k > 1,

k
1" gnllg < 1. (6.4)
n=1

Let us now set, for every x € E,

gx) =) g(x)

neN

(note that the sum is well defined since, for every x € E, there is at most one index
n for which g, (x) # 0). If g = o0, (6.4) gives ||gllec < ||P]|. If ¢ < 00, (6.4) and
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monotone convergence imply

=l <|o].
lgllg = Jim 3 gallg < €]

n<k

In both cases, we have g € L4(v). Finally, recalling (6.2), we have if f € L?(v),
®(f) = klinéo/ f(g:kg,,) dv = / fedv,
n=

where the use of the dominated convergence theorem in the second equality is
justified by the bound | Y%_, ¢, < |gl.

The fact that ||@|| = ||gll; and the uniqueness of g are then established by the
same arguments as in the case v(E) < oco. This completes the proof of Theorem 6.7.
0O

Remark When p = oo, the result of the theorem fails in general: there may exist
continuous linear forms on L*°(E, A, v) that cannot be represented as @ (f) =
f fgdv with a function g € L'(E, A, v). Let us consider the case where E = N
and v is the counting measure. Then L*°(E, A, v) = £*° is the space of all bounded
real sequences a = (ay)ren equipped with the norm ||a||soc = sup{lax| : k € N}.
Let H be the closed linear subspace of £*° defined by

H :={a € £* : lim a; exists in R},
k—o00
and for every a € H, set
@ (a) = lim ag.
k— o0

Plainly, |®(a)|] < |lallco- The Hahn-Banach theorem (Theorem A.l in the

Appendix) allows us to extend @ to a continuous linear form on £°°, whose operator
norm is bounded by 1. It is easy to see that @ cannot be represented in the form

®(a) = Zakbk

keN

with an element b = (bg)ren of £1. If such a representation did exist, then by
considering, for every n € N, the element @™ of £>° defined by a,E") = L=y}, we
would get

bp = ®@™) =0,

for every n € N and thus @ = 0 which is absurd.
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6.4 The Riesz-Markov-Kakutani Representation Theorem
for Signed Measures

In this section, we provide a version of the Riesz-Markov-Kakutani representation
theorem (Theorem 3.13) for signed measures. Throughout this section, E is a
separable locally compact metric space. We let Co(E) stand for the space of all
real continuous functions on E that tend to O at infinity: a real continuous function
f on E belongs to Co(E) if and only if, for every ¢ > 0, we can find a compact
subset K of E such that | f(x)| < e for every x € E\K. The space Co(E) is a
Banach space for the norm

£l = sup|f(x)].
xeE

If w is a signed measure on (E, B(E)), the formula

¢U%=wawf€%wx

defines a continuous linear form on Co(E). Moreover, this linear form is continuous
since

12(NI = /E LAl < [l CE) 1A

which also shows that | @] < |uw|(E).

Theorem 6.8 Let @ be a continuous linear form on Co(E). Then there exists a
unique signed measure |1 on (E, B(E)) such that

Vf e Co(E), Wﬂ=ﬁfw~

Moreover, |@| = |u|(E).

We refer the reader to Chapter 6 of Rudin [22] for a proof in the more general
complex setting.

Remark The space M(E) of all signed measures on E is a linear space, and p —
|| (E) defines a norm on this linear space. Moreover, it is easy to verify that M(E)
is complete for this norm (cf. Exercise 6.2 below). The preceding theorem can be
reformulated by saying that M (E) is the topological dual of Co(E).

When E is compact, Co(E) coincides with the space Cp(E) of all bounded
continuous functions on E, and therefore M(E) is the dual of Cp(E). This last
assertion becomes false when E is not compact, in particular when £ = R. An
example can be given along the lines of the end of Section 6.3.
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6.5 Exercises

Exercise 6.1 Let a < b and let f be a real function defined on [a, b]. Prove that
the following three assertions are equivalent:

(i) f is the difference of two increasing right-continuous functions.
(ii)) There exists a signed measure u on [a, b] such that f(x) = u([a, x]) for
every x € [a, b].
(iii))  f is right-continuous and of bounded variation in the sense that

sup > 1f@) = flai)l < oo,

a=ap<ai<--<ap_1<ap=b ;_;

where the supremum is over all choices of the integer n > 1 and the reals
ag,...,ay suchthata =ag <a; <---<ay_1 <a, =b.

Exercise 6.2 Let M (RR) be the linear space of all signed measures on (R, B(R)),
and for every u € M(R), set ||u|]| = |u|(R). Verify without using Theorem 6.8
that the mapping i +— ||| is @ norm on M(R), and that M (RR) equipped with this
norm is a Banach space.

Exercise 6.3 We keep the notation (M(R), || - ||) of the previous exercise.
(1) Let u, v € M(R). Verify the existence of a unique signed measure ;& ® v on
R2 such that, for every A, B € B(R),
u V(A x B) = u(A)v(B).
2) If u,v e M(R)), we set, for every A € B(R),
mv(A) =p@v({(x,y) e R*: x4y € A)).

Verify that w % v = v % w is a signed measure on R, and ||p * v|| < |||l [[V]]-
(Hint: Use the Jordan decomposition of u and v.)
(3) Verify that, for every bounded measurable function f : R — R,

ff(z)u*v(dz) =/</f(X+y)u(dx))V(dy) =f(/f<x+y>v(dy>)u(dx>.

(4) Suppose that there exist two functions f and g in LI(R, B(R), 1) such that
w = f-Aand v = g - A, with the notation of Proposition 6.5. Show that
mxv=(f*g)- A

(5) Verify that the identities ux (vxy) = (u*V)*xy, ux (V+y) = uxv+uxy
and a(u * v) = (ap) * v hold for every u, v,y € M(R) and a € R. As we
already know that (M(R), || - ||) is a Banach space (Exercise 6.2) and that the
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inequality ||w * v|| < |u|l |lv]| holds, this means that (M (R), || - ||) equipped
with the operations + and * is a Banach algebra. Verify that the Dirac measure
dp is the unit element of this Banach algebra (compare with Exercise 5.7).

Exercise 6.4 Let (E, A, u) be a measure space. Assume that there exists a
sequence (A, ),eN of disjoint measurable sets such that 0 < u(A,) < oo for every
n € N, and E = U,ecnA,. Let F be the linear subspace of L*°(E, A, ) spanned
by the functions 1 and 14, for every n € N. Show that, for every f € F, the limit

1
li 1 d
ninéoumn)f anf it

exists in R. Using the Hahn-Banach theorem (Theorem A.1), construct a continuous
linear form @ on L*°(E, A, u) which cannot be represented as @ (f) = [ fgdu
forsome g € L'(E, A, ).

Exercise 6.5 Let A be the o-field on [0, 1] that consists of all subsets of [0, 1] that
are (at most) countable or whose complement is (at most) countable. Let & be the
counting measure on ([0, 1], A).

(1) Verify that a function f : [0, 1] — Risin L'([0, 1], A, w) if and only if the
set Ey = {x € [0, 1] : f(x) # 0} is at most countable, and

D 1f)] < oo

X€Ey

Furthermore, we have || f||1 = erEf | f(x)] < oo in that case.

(2) Forevery f € L'([0, 1], A, u), set

O(f)= Y xf(x).

xeEy

Prove that @ is a continuous linear form on L' ([0, 1], A, u).

(3) Show that there exists no function g € L°([0, 1], A, u) such that @(f) =
[ fgdu for every f € L'([0, 1], A, ). This is not a contradiction with
Theorem 6.7 because u is not o -finite.



Chapter 7 )
Change of Variables Shethie

This short chapter is devoted to the change of variables formula, which identifies the
pushforward of Lebesgue measure on an open set of R? under a diffeomorphism.
Along with the Fubini theorem, the change of variables formula is an essential tool
for the calculation of integrals, some of which play a crucial role in probability
theory. An important application is the formula of integration in polar coordinates in
the plane, and its generalization in higher dimensions involving Lebesgue measure
on the unit sphere of R¢. The latter measure will be instrumental in Chapter 14 when
we study harmonic functions and their relations with Brownian motion.

7.1 The Change of Variables Formula

In view of proving the change of variables formula, we start with the important
special case of an affine transformation. We use the notation A, for Lebesgue
measure on RY.

Proposition 7.1 Let b € RY and let M be a d x d invertible matrix with real
coefficients. Define a function f : R — R? by f(x) = Mx + b. Then, for every
Borel subset A ofRd,

ra(f(A)) = |det(M)| 1q(A),
where det(M) is the determinant of M.
Remark If M is not invertible, f(A) C f(R?) is contained in a hyperplane, which

has zero Lebesgue measure.

Proof First notice that f(A) = (f~H~1(A) € BRY) if A € B(R?) since
f~!is continuous hence measurable. Then, thanks to the translation invariance of
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Lebesgue measure, it is enough to consider the case b = 0. In that case, we have,
for every a > 0 and every Borel subset A of R?,

ri(fla+ A)) = ra(f(@)+ f(A)) = ra(f(A)),

which shows that the measure A +— X4(f(A)) (which is the pushforward of A4
under f~1)is invariant under translations. By Proposition 3.8, there exists a constant
¢ > 0 such that, for every A € B (Rd),

ra(f(A)) = chra(A).

It remains to prove that ¢ = |det(M)|.

If M is an orthogonal matrix, and B, denotes the closed unit ball of Rd, we have
f(B,) = By, and it immediately follows that ¢ = 1 = |det(M)]|.

Recall the notation ’ N for the transpose of a matrix N. Then, if M is a positive
definite symmetric matrix, we can find an orthogonal matrix P such that’ PM P is
diagonal with diagonal coefficients o; > 0,7 € {1, ..., d}. Then, using the fact that
'p =P wehave

d
FP0. 1)) = {MPx :x € [0, 11} = {Py : y € []10. o]},

i=1
and thus, using the orthogonal case,

d d
¢ = (P[0, 1) = 2a(f (P10, 1) = ([ ]10, 1) =
i=1 i

;.
1

So we have again ¢ = |det(M))].

Finally, in the general case, we observe that we can write M = PS, where P
is orthogonal and S is positive definite symmetric (take S to be equal to the square
root of the symmetric matrix ‘MM and P = MS~'). Using the two special cases
treated above, we immediately get

¢ = |det(P)| |det(S)| = |det(M)].

O

Let U and D be two open subsets of R?. We say that a function ¢ : U —>
D is a C!-diffeomorphism if ¢ is bijective and both ¢ and ¢! are continuously
differentiable. Then, the differential ¢’ (1) is invertible, for every u € U.
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Theorem 7.2 Let ¢ : U —> D be a C'-diffeomorphism. Then, for every Borel
function f : D — R4, we have

/f(X)dX=/ flo@)) [Jp(u)| du,
D U

where J,(u) = det(¢’ (u)) is the Jacobian of ¢ at u.

Remark We state the theorem only for nonnegative functions, but of course the
same formula holds for functions of arbitrary sign under appropriate integrability
conditions (just decompose f = fT — f7).

Proof Writing a nonnegative measurable function as an increasing limit of nonneg-
ative simple functions, we see that it is enough to treat the case f = 14, where A is
a Borel subset of U. In that case, the formula reduces to

) = [ g
o=l
Replacing A by ¢! (A), we have to prove that, for every Borel subset A of U,
ra(p(A)) = /A | (u)] due. (1.1)

(note that @(A) = (¢~ 1)~1(A) is a Borel set). In the next lemma, dist(F, F') =
inf{ly — y'| : y € F,y’ € F} denotes the Euclidean distance between two closed
subsets F and F’ of R?. A cube with faces parallel to the coordinate axes is a subset
of RY of the form C = I} x I x --- x I, where I, ..., I; are intervals of the
same length r, which is called the sidelength of C. The center of C is defined in the
obvious manner.

Lemma 7.3 Let K be a compact subset of U and let ¢ > 0. Then, we can choose
8 > 0 sufficiently small so that d5 < dist(K, U€) and, for every cube C with faces
parallel to the coordinate axes, with center uy € K and sidelength smaller than §,
we have

(I = &)y (o) 2a(C) = 2a(9(C)) = (1 4 &)[Jp(uo)| 2a(C).

Proof of Lemma 7.3 Let a = sup{|l¢’(v)"!| : v e K} < oo, where ||¢(v) | is
the operator norm of the matrix (p’(v)_1 ,and let n > 0 so small that (1 + da n)d <
1 + . Since ¢’ is continuous, the mean value inequality allows us to choose § > 0
small enough so that § < 411 dist(K, U°) and, for every ug € K, for every u € R4
such that 0 < |u — ug| < dé,

o) — puo) — @' (o) — uo)| < nlu — uol.
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Fix ugp € K and set f(v) = ¢(ug) + ¢'(up)v for every v € RY. We get that, if
0 < |u —ug| < dé,

o) = f(u—uo) + h(u, up),
with [h(u, ug)| < nlu — uo|. Setting g(u, ug) = @' (uo) " 'h(u, ug), we find

o) = fu — ug + gu, up)),

where |g(u, ug)| < anlu — up|, and a was defined at the beginning of the proof.

Now let C be a cube (with faces parallel to the coordinate axes) centered at u
and of sidelength » < §, and let C = —ug + C be the “same” cube translated so that
its center is the origin. We can apply the previous considerations to u € C: we have
thenu —ug € C and |lu —ug| < dr/2, which implies |g(u, up)| < danr/2 and thus
g(u, ug) € dan C. It follows that

¢(C) C f((1 +danC),
Thanks to Proposition 7.1, we then get

ra(@(0)) < Aa(f (1 +dan)C)) = |detg' (uo)| 2a((1 + dan)C)
= (1+dan)’|Jy (o) 24(C),
which gives the desired upper bound since (1 4+ dan)? < 1 +&.
The proof of the lower bound is analogous, and we only sketch the arguments.
We again fix ug € K and keep the same notation f (v) = ¢(ug) + ¢’ (ug)v as above.
Given a positive constant y, which can be taken arbitrarily small, we use the equality

(q)‘l)’((p(uo)) = (p’(uo)_l and the mean value inequality to get, for v € R? such
that |v| is sufficiently small (independently of the choice of uy),

o N f ) = o (@wo) + ¢ (uo)v)
= uo + (") (p(u0)) ¢’ (uo)v + k(uo, v)
=ug + v + k(ug, v),

where |k(uo, v)| < y|v|. It follows that, for § > 0 small enough and for every cube
C of sidelength smaller than § centered at ug, we have, with the same notation C as
above,

o '(f(1—dy)C)cC.
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This implies that

f((1 —dy)C) C ¢(C)

and we complete the proof in the same manner as for the upper bound. O

We return to the proof of the theorem. Let n € N. We call elementary cube of
order n any cube of the form

d
C = ]_[ (k27" (k; + 127", kj € Z.
j=1

We write C, for the class of all elementary cubes of order n, and C,EU) for the class
of all elementary cubes of order n whose closure is contained in U.

Let no € N such that C,EOU) is not empty, and let Cy € C,EOU). Also let ¢ > 0. Fix
n > ng large enough so that the conclusion of Lemma 7.3 holds with § = 27",
when K is the closure of Cy. Taking n even larger if necessary, we can assume that,
for every u, v € K such that |u — v| < d27",

(A =e)lJp@)| = |Jp()| = (1 +&)|Jp)]. (7.2)

Observe that Cy is the disjoint union of those cubes C € C, that are contained in
Co. Then, writing xc for the center of a cube C, we have

ra(@(Co) =3 Ma@(C) < (L +6) Y. 1pxe) ha(C)

CeC,, CECn
CcCy CcCCy
<d+e)? ) f|1¢<u>|du
ceCy, c
CcCo

=1+ 8)2/ |Jp(u)| du.
Co

We have used the bounds of Lemma 7.3 in the first inequality, and (7.2) in the second
one. Similarly, we get the lower bound

ra(@(Co)) = (1 — 8)2fc |Jp ()| du.
0
As ¢ was arbitrary, we conclude that

3a(@(Co)) = f 1, ()] du.
Co
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We have thus obtained (7.1) when A is a cube of C,EU), for every n € N.

The general case now follows from monotone class arguments. Let u denote the

pushforward of Lebesgue measure on D under ¢~ !:

w(A) = ra(p(A))

for every Borel subset A of U, and also set
w(A) = /A [Jp ()] du.

We have thus obtained that u(C) = (C) for every C € C,EU) and every n € N. On

the other hand, if U,, denotes the (disjoint) union of the cubes of C,(,U) that are also
contained in [—n, n]¢, we have U, 1 U as n — oo and u(U,) = i(U,) < oo for
every n. Since the class of all elementary cubes whose closure is contained in U (we
include & in this class) is closed under finite intersections and generates the Borel
o-field on U, we can apply Corollary 1.19 to conclude that 4 = 1, which was the
desired result. |

Application to Polar Coordinates
We taked = 2, U = (0,00) X (—m, ) and D = Rz\{(x,O); x < 0}. Then the
function ¢ : U —> D defined by

o, 0):=(rcosf,rsinf), (r0)elU
is a C!-diffeomorphism from U onto D. One easily computes

cos § —rsin 6
sin@® rcos 6

¢'(r,0) = (

and thus J,(r,0) =r.
It follows from Theorem 7.2 that, for every Borel measurable function f :
R2 — R+,

/ f(x,y)dxdy = / f(rcos 8, rsin 0) rdrdd
D 1%

o0 T
=/ f(rcos 6, rsin 6) rdrdf.
0

—TT

Since the negative half-line has zero Lebesgue measure in R, we have also

oo T
/ f(x,y)dxdy = / f(rcos 6, rsin 6) rdrdf.
R2 0 -



7.2 The Gamma Function 127

This formula will be generalized to higher dimensions in Theorem 7.4 below.

Example If f(x,y) = exp(—x? — y?), Theorem 5.3 gives

+o00 2
/ ¥y dxdy = (/ e dx)
R2

—00

whereas

o e o0 5
/ f(rcos 9,rsin9)rdrd9=2n/ e rdr =m.
0 0

-7

It follows that

Hoo
/ e dx = /7. (7.3)

—00

This calculation is important in probability theory as it leads to the definition of the
Gaussian (or normal) distribution!

7.2 The Gamma Function
The Gamma function is defined for a > 0 by
(0.¢]
') = / x4 e dx.
0
An integration by parts shows that, for every a > 0,
o (e.¢]
IF'a+1) = / x%e ™ dx = / ax®le™dx =al(a).
0 0

Since I'(1) = 1, it follows by induction that I"(n) = (n — 1)! for every integer
n > 1. We can also compute I (; + n) for every integer n > 0. A change of
variables shows that

1 o & 2
F( ):/ xil/zefxdx=2/ eV dy = /n,
2 0 0
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by formula (7.3). Consequently,

1 _1><3><-~-><(2n—1)
F(2~|—n>_ n JT,

for every integer n > 0.

Recall our notation y; = Ag(By) for the volume of the unit ball in R4, and
formulas (5.6) giving the value of y; when d > 2. From the expression of I"(n) and
r (é + n), we can rewrite these formulas in the form

7d/2

— . 7.4
r@g+n 74

Vd

7.3 Lebesgue Measure on the Unit Sphere

Let SY~! be the unit sphere of R?:
S =(x e R?: x| = 1}.
If A € B(S?™1), we let @(A) be the Borel subset of RY defined by

O(A) ={rx:rel0,1]and x € A}.

Theorem 7.4 For every A € B(S?™1), set
wq(A) :=d ra(O(A)).
Then wq is a finite positive measure on S~1, which is invariant under vector

isometries of RY. Moreover, for every nonnegative Borel measurable function f
on Rd, we have

(e.¢]
/ fe)dx = / / Frz)ri™t dr wg(dz). (7.5)
R4 0 §d—1
The total mass of wg (volume of the unit sphere) is
2577d/2
w0y = T
I'(d/2)

Remark One can also show that any finite measure on S?~! that is invariant under
vector isometries is of the form ¢ wy, for some ¢ > 0 (see Lemma 14.20 below).
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Proof To see that wy is a finite positive measure on SY~!, we just observe that ey is
(d times) the pushforward of the restriction of A4 to the punctured unit ball B4\ {0}
under the mapping x — |x|~'x. The fact that A, is invariant under vector isometries
of R¢ (Proposition 7.1) readily implies that the same property holds for w,. Indeed,
if ¢ is a vector isometry of RY,

2a (O (971 (A))) = 297 (O (A))) = 1a(O(A)).
Using formula (7.4), the total mass of wy is

wa(STY) = d rg(By) = dya = d nlr
d = d\Dd) = d = = .
rg+n  ré

We still have to establish (7.5). It is enough to treat the case f = 1p, where B is
a Borel subset of R¢\{0}. The formula

w(B) :=/ / 15(rz) rdﬁldrwd(dz)
0 Sd—l

defines a measure x on R?\{0} and we have to verify that u© = A4. Consider first
the case of a Borel set B of the form

B={x e RN\{0}:a < |x| <band

X
X

iy €A

where A is a Borel subset of Sd_l, and 0 < a < b. Then,
b d
b —
u(B) = wd(A)f rtar =" % waa).
a

To compute A4(B), seta = a/b € (0, 1), and, for every integer n > 0,
Op(A)={y=rx:a"" <r <o’ andx € A}.

Then, 14(0,(A)) = «"¥14(Gp(A)) and, on the other hand,

2a(O(A) =Y ha(On(A)).

n=0
It immediately follows that

_d

2a(Bo(A)) = (1 —a®) 1a(O(A)) = da wq(A),

and, since B = b ®y(A),
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d d

b* —a
2a(B) = b"14(0p(A)) = g ©dA) =nB).

Finally, the class of all sets B of the preceding type is closed under finite inter-
sections and generates the Borel o-field on R\ {0} (we leave the easy verification
of the latter fact to the reader). We can again use Corollary 1.19 to conclude that
n=2Xrq4. |

If f:R?Y — R, is a radial function, meaning that f(x) = g(|x|) for some
Borel measurable function g : Ry — R, Theorem 7.4 shows that

/ fx)dx =cq f ” gryri=ldr,
R4 0

where ¢ = wg(S771).

7.4 Exercises

As we will see later for some of them, most of the calculations in the exercises below
have natural interpretations in probability theory.

Exercise 7.1 Let p(dudv) be the probability measure on (0, c0) x [0, 1] with
density e " with respect to Lebesgue measure du dv. Verify that the pushforward of
w under the mapping @ : (0, 00) x [0, 1] —> R? defined by

@ (u, v) = (Vucosmu), /usin(2wv))

can be written as v ® v, where v is a probability measure to be determined. (A
probabilistic interpretation of this exercise can be found in the example following
Corollary 9.6 below.)

Exercise 7.2 Prove that, for every a, b > 0,

T(@I(b)=4 / e~ WPV 2a=126=1 4y gy,
(0,00)?

and use this and an integration in polar coordinates to derive the formula

r@re (', b1
'@ +b) _/O 11 =Pl 1ar. (7.6)

I'(a)I(b)

F(atb) is called the Beta function.

The function (a, b) —
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Exercise 7.3

(1) Let p(du) be the probability measure on (0, co) with density e with respect
to Lebesgue measure. Prove that the pushforward of 1 ® u under the mapping
@ : (0,00)2 — (0, 1) x (0, 00) defined by

¢(u,v)=< j_ ,u—i—v)
u-+v

can be written as v ® 6, where v is Lebesgue measure on (0, 1) and 0 is a
probability measure on (0, co) to be determined. (See Exercise 9.2 below for a
probabilistic interpretation.)

(2) More generally, for every a > 0 and b > 0, consider the measure 14, (du dv)
on (0, co)? with density u¢~1v?~le™#~V with respect to Lebesgue measure on
(0, 00)2. Compute the pushforward of p, , under @ and use this to reprove
formula (7.6).

Exercise 7.4 Let u(dxdy) be the measure on R? with density e~ with
respect to Lebesgue measure on R2. Compute the pushforward of p under the
mapping ¥ : R? — R, x [0, 1] defined by

2

W(x,y):(xz—l—yz, * )
x2+y2

Similarly, compute the pushforward of u under the mapping @ (x, y) = x/y. Note
that this makes sense since w({(x, y) : y = 0}) = 0. (See Exercise 9.3 below for a
probabilistic interpretation.)

Exercise 7.5 Let y > 0. Show that, for any nonnegative measurable function f on
R?

/f(x—y)dx=/f(x)dx.
R X R

Hint: The mapping x > x — Z is a diffeomorphism from (0, co) onto R, resp. from
(—o0, 0) onto R.
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Chapter 8 )
Foundations of Probability Theory Shethie

This chapter introduces the fundamental notions of probability theory: random vari-
ables, law, expected value, variance, moments of random variables, characteristic
functions, etc. Since a probability space is nothing else than a measurable space
equipped with a measure of total mass 1, many of these notions correspond to those
we have introduced in the general setting of measure theory. For instance, a random
variable is just a measurable function, and the expected value coincides with the
integral of a measurable function.

However the point of view of probability theory, which is explained at the
beginning of this chapter, is rather different, and it is important to have a good
understanding of this point of view. In particular, the notion of the law of a random
variable, which is a special case of the pushforward of a measure, is fundamental
as it expresses the probability that a random variable “falls” into a given set. We
list several classical probability laws, some of which will play a major role in the
forthcoming chapters. We also restate some basic notions and facts of measure
theory in the language of probability theory, and we apply the Hilbert space
structure of L? to the linear regression problem, which consists in finding the best
approximation of a (real) random variable as an affine function of several other
random variables. The end of the chapter gives several ways of characterizing the
law of a random variable with values in R or in R?. Of special importance is the
characteristic function, which is defined as the Fourier transform of the law of the
random variable in consideration.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 135
J.-F. Le Gall, Measure Theory, Probability, and Stochastic Processes,
Graduate Texts in Mathematics 295, https://doi.org/10.1007/978-3-031-14205-5_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14205-5_8&domain=pdf

 889 4612 a 889 4612 a
 
https://doi.org/10.1007/978-3-031-14205-5_8

136 8 Foundations of Probability Theory

8.1 General Definitions

8.1.1 Probability Spaces

Let (£2, .A) be a measurable space, and let P be a probability measure on (£2, A),
that is, a positive measure with total mass 1. We say that (£2, A, IP) is a probability
space.

A probability space is thus a special case of a measure space, when the total
mass of the measure is equal to 1. The point of view of probability theory is
however rather different from measure theory. In probability theory, one is aiming
at a mathematical model for a “random experiment”:

* (2 represents the set of all possible outcomes for the experiment. If we fix w € £2,
this means that we have completely determined all random quantities involved in
the experiment.

* A is the set of all “events”. Here events are the subsets of £2 whose probability
can be evaluated (the measurable sets, in the language of measure theory). One
should view an event A as the subset of all ® € §2 for which a certain property
is satisfied.

» Forevery A € A, P(A) represents the probability that the event A occurs.

The idea of developing probability theory in the framework of measure theory
goes back to Kolmogorov in 1933. For this reason, the properties of probability
measures, in particular the o-additivity of these measures, are often referred to as
Kolmogorov axioms.

In the early age of probability theory (long before the invention of measure
theory), the probability of an event was defined as the ratio of the number of
favorable cases to the number of all possible cases (it was implicitly assumed
that all possible cases were equiprobable). This is sometimes called the “classical”
definition of probability, and it corresponds to the uniform probability measure in
Example (1) below. The classical definition can be criticized in several respects,
in particular because it does not apply to situations where there are infinitely
many possible cases. In the nineteenth century, the so-called frequentist definition
of probability became well established and even dominant. According to this
definition, if one repeats the random experiment N times, and if N4 denotes the
number of trials at which the event A occurs, the ratio N4 /N should be close to the
probability P(A) when N is large. This is an informal statement of the law of large
numbers, which we will discuss later.

One may naively ask why one could not consider the probability of “any” subset
of 2 (why do we have to restrict to events, which belong to the o-field .4 ?). The
reason is the fact that it is in general not possible to define interesting probability
measures on the set P(§2) of all subsets of §£2 (except in simple situations where £2
is countable). Taking £2 = [0, 1], equipped with its Borel o -field and with Lebesgue
measure, already makes it possible to define many deep and interesting models of
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probability theory. However, the example treated in Section 3.4 indicates that there
is no hope to extend Lebesgue measure to all subsets of [0, 1].

Examples (1) The experiment consists in throwing a (well-balanced) die twice.
Then,

card(A)

2={1,2,...,6>, A=P(R2), P(A) = 36

The choice of the probability P corresponds to the (intuitive) idea that all outcomes
have the same probability here. More generally, if £2 is a finite set, and 4 = P(£2),
the probability measure defined by P({w}) := 1/card(£2) is called the uniform
probability measure on £2.

(2) We throw a die until we get 6. Here the choice of £2 is already less obvious. As
the number of trials needed to get 6 is not bounded (even if you throw the die 1000
times there is a small probability that you do not get a 6), the right choice for £2 is
to imagine that you throw the die infinitely many times

2={12,...,6N

in such a way that an element of 2 is a sequence w = (w1, w2, ...) giving the
outcomes of the successive trials. The o-field A on §2 is defined as the smallest
o-field containing all sets of the form

{we 2w =il,wr=1iy,...,w, =in}

wheren > land iy, ...,i, € {1,2,...,6} — we want at least to be able to compute
the probability of given outcomes in a finite number of trials. Finally, P is the unique
probability measure on §2 such that, for every choice of n and iy, ..., i,,

"
P({a)GQ20)1=i1,a)2=i2,...,a)n=in})=<6> .

The uniqueness of [P is a simple consequence of Corollary 1.19. The existence of
P requires more work, but may be deduced from the fact that we can construct a
sequence of independent random variables uniformly distributed over {1, ..., 6}
(this will be discussed in Section 9.4 below). Alternatively, one can view the
existence of [P as an extension of the construction of product measures in Chapter 5
to the case of infinite products.

(3) Suppose we want to model the displacement in space of a particle subject
to random perturbations. If we restrict our attention to the time interval [0, 1],
we choose the probability space 2 = C([0, 1], R?) consisting of all continuous
functions @ : [0,1] —> R3 (each such function corresponds to a possible
trajectory of the particle). The o-field A on 2 may be defined as the Borel
o-field if C([0, 1], R?) is equipped with the topology of uniform convergence
(equivalently, A is the smallest o -field for which the “coordinate mappings” @
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w(t) are measurable for every ¢ € [0, 1], see Exercise 1.3). Then there are many
possible choices for the probability measure P. Perhaps the most important one,
corresponding to a “purely random” motion, is the Wiener measure, corresponding
to the law of Brownian motion, which we will construct in Chapter 14.

Important Remark Very often in what follows, the precise choice of the probabil-
ity measure [P will not be made explicit. The important data will be the properties of
the (measurable) functions defined on (§2, .A), which are called random variables.

Terminology Even more than in measure theory, sets of measure zero are present in
many statements of probability theory. We say that a property depending on w € §2
holds almost surely (a.s. in short) if it holds for every w belonging to an event of
probability one. So almost surely has the same meaning as almost everywhere in
measure theory.

8.1.2 Random Variables

In the remaining part of this chapter, we consider a probability space (£2, A, P), and
all random variables will be defined on this probability space.

Definition 8.1 Let (E, £) be a measurable space. A random variable with values in
E is a measurable function X : 2 — E.

We will very often consider the case E = R or E = R?. The o-field on E will
then always be the Borel o-field. We speak of a real random variable when £ = R
and of a random vector (also called a multivariate random variable) when E = R4,
A real random variable X (or a random vector X) is said to be bounded if there
exists a constant K > 0 such that | X| < K a.s.

Examples Recall the three cases that have been discussed in the previous section,
and let us give examples of random variables in each case.

(1) X((, j)) =i+ j defines a random variable with values in {2, 3, ..., 12}.

(2) X(w) = inf{j : @w; = 6}, with the convention inf & = oo, defines a random
variable with values in N = NU{oo}. To verify the measurability of w = X (w),
we write, for every k € N,

X '(k) ={weR 0 £6,00#6, ... 01 %6, 0 = 6}.

(3) For every fixed t € [0, 1], X(w) = w(¢) is a random variable with values in
R3. The measurability is clear since w — w(t) is even continuous. We note that
we have not specified [P in this example, but this is irrelevant for measurability
questions.
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We turn to a very important definition.

Definition 8.2 Let X be a random variable with values in (E, £). The law Py of
the random variable X is the pushforward of the probability measure P under X. In
other words, Py is the probability measure on (E, &) that is defined by

Px(B) :=P(X"'(B)), VBEek&.

We also call Py the distribution of X, and we say that X is distributed according to
Px. Two random variables Y and Y’ with values in (E, £) are said to be identically
distributed if they have the same law Py = Py.

In probability theory, one prefers to write Py(B) = P(X € B) instead of
P(X~1(B)). Here X € B is shorthand for {w € 2 : X(w) € B} = X~ '(B) (as
another general rule, the parameter w is often “hidden” in formulas of probability
theory).

The law Py gives the probability of events that “depend” on the random variable
X. Informally, we may say that we associate a “random point” X (w) with each
o € £2, and that Py (B) is the probability that this random point “falls” in B.

Remark If p is a probability measure on (Rd, B(Rd)) (or on a more general
measurable space), there is a canonical way to define a random variable X whose
law is . It suffices to take 2 = R?, A = B(R?), P = u, and X (w) = . It is then
trivial that the law of X is u.

Special Cases
¢ Discrete random variables. This is the case where E is finite or countable (and
& ="P(E)). The law of X is then a point measure, which can be written as

]P)XZZPXSX

xeE

where, for every x € E, §, is the Dirac measure at x, and p, = P(X = x) (as
explained above P(X = x) stands for P({w € 2 : X(w) = x})). Indeed, for
every subset B of E,

Pe(B) =PX e B) =P([J(X=2)) = D PX =)= ) p.6:(B).

xeB xeB xeE

Note that the fact that £ (hence B) is at most countable is used in the third
equality. In practice, finding the law of a discrete random variable with values in
E means computing the probabilities P(X = x) for every x € E.
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Example Let us consider example (2) above, with X (w) = inf{j : w; = 6}. Then,
forevery k > 1,

PX=0=P( [ {or=ii....om =i 0 =6))
i]yeesif—170
1
k=l ok
(o)

1Sk
= 6(6) .

We note that Y oo P(X = k) = 1 and thus P(X = o0) = 1 —P(X € N) = 0.
However, the set { X = oo} is not empty as it contains all sequences (i1, i2, . . .) such
that iy # 6 for every k € N.

» Random variables with a density. A probability density function on R? is a
nonnegative Borel function p : R? — R such that

/ px)dx =1.
R4

Then a random variable X with values in R is said to have density p if
Px(B) = / p(x)dx,
B

for every Borel subset B of R%. In other words, p is the density of Py with respect
to Lebesgue measure on RY,

Note that p is determined from Py (or from X) only up to a set of zero Lebesgue
measure. In most examples that we will encounter, p will be continuous on R? (or,
in the case d = 1, p will be continuous on [0, co) and vanish on (—oo, 0)) and
under this additional condition p is determined uniquely by Py.

If d = 1, we have in particular, for every a < g,

B
PwsXsm=/iﬂmm.

o

8.1.3 Mathematical Expectation

Definition 8.3 Let X be a real random variable defined on (£2, A, P). We set

E[X] = / X (w) P(dw),
2
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provided that the integral makes sense, which (according to Chapter 2) is the case if
one of the following two conditions holds:

e X > 0 (then E[X] € [0, c0]),
e X is of arbitrary sign and E[| X|] = f |X|dP < oo.

The quantity E[X] is called the expected value or expectation of X.

As we saw in Chapter 2, the case X > 0 can be extended to random variables
with values in [0, oo], and this is often useful. As in Chapter 2, we can also define
E[X] when X is a complex-valued random variable such that E[| X|] < oo (we just
deal separately with the real and the imaginary parts).

The preceding definition is extended to the case of a random vector X =
(X1, ..., Xg4) with values in R4 by setting E[X] = (E[X1], ..., E[X4]), provided
of course that all quantities E[X;], 1 <i < d, are well defined. Similarly, if M is a
random matrix (a random variable with values in the space of n x d real matrices),
we can define the matrix E[M] by taking the expectation of each component of M,
provided these expectations are well defined.

Remark If X = 1p, E[X] = P(B). In general, E[X] is interpreted as the mean
value of X, and is also called the mean of X. In the special case where §2 is finite
and P is the uniform probability measure on §2, E[X] is the average (in the usual
sense) of the values taken by X.

The following proposition is very easy, but nonetheless often useful.

Proposition 8.4 Let X be a random variable with values in [0, co]. Then
o0
E[X] :/ P(X > x)dx.
0

Let Y be a random variable with values in Z.. Then,
o o0
E[Y] = Zk}P’(Y k) = ZP(Y > k).
k=0 k=1

Proof For the first assertion, we use the Fubini theorem to write

E[X] = E[/Ooo 1p<x) dx] - fo

If Y is a random variable with values in Z_, the equality E[Y] = Z,fio kP(Y =k)
is immediate from the definition since Y = Z,fio k1{y—r). The other formula is also
easy by writing E[Y] = E[Y 2, 1{y>«}] and interchanging sum and expectation.

O

o]

o
El<x;]dx :/ P(X > x)dx.
0

The next proposition is a special case of Proposition 2.9. This special case
deserves to be stated again because of its importance in probability theory.
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Proposition 8.5 Let X be a random variable with values in (E, ). For every
measurable function f : E — [0, 00], we have

E[f(X)] = fE () Pe ().

If f is of arbitrary sign (or even complex-valued), the formula of the proposition
remains valid provided that both sides makes sense, which holds if E[| f(X)|] < oc.
In particular, if X is a real random variable such that E[| X|] < oo, we have

E[X] = / x Py (dx).
R

Characterization of the Law of a Random Variable It will be useful to charac-
terize the law of a random variable in different ways. It follows from Corollary 1.19
that a probability measure ;. on R? is characterized by its values on open rectangles,
that is, by the quantities u((ai, b1) x --- x (aq, bg)), for any choice of the reals
ay < bi,ay < by, ...,a5 < bg (one could restrict to rational values of a;, b;, and/or
replace open intervals by closed intervals). Since the indicator function of an open
rectangle is the increasing limit of a sequence of continuous functions with compact
support, the probability measure u is also determined by the values of f o(x) n(dx)
when ¢ varies in the space C.(R?) of all continuous functions with compact support
from R< into R. In particular, for a random vector X = (X7, ..., Xy4) with values
in RY, the law Py is characterized by the quantities

Px((ai, b1) x -+ x (aq,bq)) =Play < X1 <bi,...,aq < Xq < bg)

for any reals a; < by, az < by, ..., aq < by, or alternatively by the quantities
/d @(x) Px(dx) = E[p(X)],
R

when ¢ varies in C.(R?). In Sections 8.2.3 and 8.2.4, we will see other ways of
characterizing the law of a random variable.

Proposition 8.5 shows that expected values of random variables of the form f (X)
(where f is a real function) can be computed from the law Px. On the other hand,
the same proposition is often used to compute the law of X: if we are able to find a
probability measure v on E such that

E[£(X)] = / £dv

for all real functions f belonging to a “sufficiently large” class (e.g., when E = R?,
the class of all continuous functions with compact support) then we can conclude
that Py = v. Let us give an illustration of this general principle.
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Proposition 8.6 Let X = (X1,..., Xq) be a random vector with values in RY,
Suppose that X has a density p(x1, ..., xq). Then, forevery j € {1,...,d}, X; has
a density given by

pj(x) :/d lp(.x1,...,.Xjfl,.x,.x]q»l,...,)Cd)d.Xl...d)ijld)Cj+1...d.Xd
Ri—

(for instance, if d =2, p1(x) = [ p(x,y)dy, p2(y) = [ p(x, y)dx).

Remark If p; is given as in the proposition, there may exist values of x € R for
which p;(x) = oco. However, the fact that fRd p(x1,...,xg)dxy...dxgs = 1 and the
Fubini theorem readily imply that the Lebesgue measure of {x € R : p;(x) = oo}
is zero, and we can always change the values of a probability density function on a
set of zero Lebesgue measure.

Proof Let 7 be the projection 7w (x1, ..., xq) = x;. Using the Fubini theorem, we
have, for every Borel function f : R — R,

ELf(Xj)] =ELf(7;(X)]

= /Rd fxppxr, ..., xg)dxy ... dxg

:/Rf(Xj)(/RfH p(xl,...,xd)dxl...dxjfldxjﬂ...dxd)dxj

=/Rf(x/')17/(x/')dx/',
and the desired result follows. O
If X = (Xy,...,Xy) is a random vector with values in RY, the probability

measures IP’XJ., 1 < j < d are called the marginal distributions of X (or simply
the marginals of X). These laws are determined by the law Py of X: it is immediate
that IP’XJ. is the pushforward of Py under 7, with the notation introduced above. It
is important to observe that the converse is false:

Py is not determined by the marginal distributionsPx , ..., Px,

except in the very special case where all but at most one of the probability measures
Py, are Dirac measures. To give an example, consider a probability density function
g on R, and observe that the function p(x,x2) = ¢q(x1)g(x2) is then also a
probability density function on R? (by the Fubini theorem). By a preceding remark,
we can construct, on a suitable probability space, a random vector X = (X1, X2)
with density p. But then the two random vectors X = (X, X») and X' = (X1, X1)
have the same marginal distributions (Proposition 8.6 shows that both Px, and Py,
have density g), whereas Py and Py are very different, simply because Py is
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singular with respect to Lebesgue measure (P’ is supported on the diagonal of R,
which has zero Lebesgue measure), and Py is absolutely continuous with respect to
Lebesgue measure.

8.1.4 An Example: Bertrand’s Paradox

To illustrate the notions introduced in the previous sections, let us consider the
following problem. Suppose we throw a chord at random on a circle. What is the
probability that this chord is longer than the side of the equilateral triangle inscribed
in the circle ? Without loss of generality, we may assume that the circle is the
unit circle of the plane. Bertrand suggested two different methods to compute this
probability (Fig. 8.1).

(a) Both endpoints of the chord are chosen at random on the circle. Given the first
endpoint, the length of the chord will be longer than the side of the equilateral
triangle inscribed in the circle if and only if the second endpoint lies in an
angular sector of opening 257 /3. The probability is thus 2727 43 = %

(b) The center of the chord is chosen at random in the unit disk. The desired
probability is the probability that this center falls in the disk of radius é centered
at the origin. Since the area of this disk is a quarter of the area of the unit disk,

we get probability }‘ .

We thus get a different result in cases (a) and (b). The explanation of this
(apparent) paradox lies in the fact that we have two different random experiments,
modeled by different choices of probability spaces and random variables. In fact, the

Fig. 8.1 Illustration of Bertrand’s paradox. One compares the length of the chord (in dashed lines)
to that of the side of the equilateral triangle inscribed in the circle. On the left, two cases depending
on the choice of the second endpoint of the chord. On the right, two cases depending on the position
of the center of the chord
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assertion “we choose a chord at random’ has no precise meaning if we do not specify
the algorithm that is used to generate the random chord. The law of the random
variable that represents the length of the chord will be different in the mathematical
models corresponding to cases (a) and (b). Let us make this more explicit.

(a) In that case, the positions of the endpoints of the chord are represented by two
angles 0 and ', The probability space (£2, A, IP) is then defined by

2 =100,27)%, A=B(0,27)>), Pw) = 412d9 de’,
T

where we write @ = (9, 0") for w € 2. The length of the chord is

0

. 6-0
X (w) = 2| sin( 5 ).

It is easy to compute the law of X. Using the general principle given in the previous
section (before Proposition 8.6), we write

ELf(X)] =fgf(X(w))P(dw)

_ 1
T 4x2

lfﬂ F@sin("y) du
T Jo 2

1f2f(x> o
T Jo \/1_)(2 :

4

2 2 0 _ 0/
/ f (2] sin( D dede’
o Jo 2

So we see that X has a density, Py(dx) = p(x)dx, with
4

1 1
p(x) = 10,2 (x).
7 \/1 a2

In particular, the desired probability is

2 1
P(X>V3)= | pE)dx=
V3 3
(b) In that case, write (y, z) for the coordinates of the center of the chord. We take

1
2={o=0u,2eR:y?+7* <1}, A=B(2), P(do) = _le(nadydz
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The length of the chord is

X(a))=2\/1—y2—zz

and to compute its law, we write
1 2_ .2
E[f(X)] = 7 [ f(2 1- ye—z )1{y2+12<1} dde

1
=2/ feV1=rrdr
0

1 2
= 2/0 f(x)xdx.

Hence, X has again a density, Px (dx) = g (x)dx, with

1
q(x) = ) 1jo,21(x) x dx.

We note that this density is very different from the density p(x) obtained in case (a).
In particular,

2

1
P(XZJ3)=[/3q(x)dx= A

8.1.5 Classical Laws

In this section, we list a few important probability laws.

Discrete Distributions
(a) The uniform distribution. If E is a finite set, with card(E) = n, a random
variable X with values in E is said to be uniformly distributed over E if

1
PX=x)= , VxekE.
n

(b) The Bernoulli distribution with parameter p € [0, 1]. This is the law of a
random variable with values in {0, 1}, such that

We interpret X as the result of a coin-tossing experiment, where we get heads
with probability p and tails with probability 1 — p.
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The binomial B(n, p) distribution (n € N, p € [0, 1]). This is the law of a
random variable X taking valuesin {0, 1, ..., n} and such that
P(X = k) = (Z)pk(l —p)"k . Vkelo1,..., n}.

We interpret X as the number of heads obtained in # trials of coin-tossing (with
probability p of getting heads as above).

Geometric distribution of parameter p € (0, 1). This is the law of a random
variable X with values in Z, such that

PX=k =0-p)pt, VkeZ,.

In terms of coin-tossing with probability p of having heads, X corresponds to
the number of heads before getting the first tails.

Poisson distribution with parameter ). > 0. This is the law of a random variable
X with values in Z, such that

)\k
P(X =k) = y e, VkelZ,.

One easily computes E[ X] = A. The Poisson distribution is very important both
for practical applications and from the theoretical point of view. In practice,
the Poisson distribution is used to model the number of “rare events” that
occur during a long period. A precise mathematical statement is the binomial
approximation of the Poisson distribution. If, for every n > 1, X, has a binomial
B(n, pyp) distribution, and if np, —> A when n — oo, then, for every k € N,

A’k
lim P(X, =k) = e,
n— 00 k!
by a straightforward calculation. The interpretation is that, if every given day
there is a small probability p, =~ A/n that an earthquake occur, then the
number of earthquakes that will occur during a long period of n days will be
approximately Poisson distributed.

Continuous Distributions In the next five examples, X is a real random variable
having a density p.

()

Uniform distribution on [a, b] (a < b):

1
p(x) = 114, 57(x).
a

b —

It of course makes no difference to replace [a, b] by (a, b).
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(b) Exponential distribution of parameter A > 0 :
p) =he ™ 1g, (x).

Note that P(X > a) = e~** for every a > 0. Exponential distributions have the
following important characteristic property. For every a, b > 0,

P(X >a+b)=PX >a)P(X > b), 8.1)

which one can interpret by saying that the probability of having X —a > b
knowing that X > a coincides with the probability of having X > b (this
interpretation can be stated more precisely in terms of conditional probabilities
that will be discussed in Chapter 11 below).

Formula (8.1) thus corresponds to the property of “lack of memory” of the
exponential distribution, which explains that this distribution is used to model
the lifetime of a machine with no aging: knowing that the machine has been
in service for 10 years, the no aging property means that the remaining time
before it breaks down has the same probability distribution as if the machine
was brand-new.

It is a simple exercise to check that a random variable X with values in R4
and such that (8.1) holds must either be equal to 0 a.s. or have an exponential
distribution.

(¢) Gamma I (a, A) distribution (a > 0, A > 0):

a

A 1
pey = x Le™ 1, (x),

where I'(a) = fooo 1%~ 1e~'dt is the Gamma function (Section 7.2). These laws
generalize the exponential distribution, which correspondstoa = 1.
(d) Cauchy distribution with parameter a > 0:

) 1 a
x) = .
P T a? + x?

Note that E[| X|] = 400 in this case.
(e) Gaussian, or normal, N'(m, 0'2) distribution (m € R, o > 0):

® 1 (x —m)?
px) = ex ( — )
o/2m P 202
The fact that p is a probability density function follows from the formula
fR e dx = /7 obtained in (7.3). Together with the Poisson distribution, the
Gaussian distribution is the most important probability law. Its density has the
famous bell shape. One easily verifies that the parameters m and o correspond
tom = E[X] and 02 = E[(X — m)?]. If X has the N (m, ¢2) distribution,
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X — m is distributed according to A/(0, 0%). The Gaussian distribution will play
a major role in Chapter 10.

It will be convenient to make the convention that a real random variable Y
which is a.s. equal to the constant m follows the N (m, 0) distribution. Then, for
every a, b € R, if X is distributed according to N (m, 02), aX + b is distributed
according to N (am + b, a*c?).

8.1.6 Distribution Function of a Real Random Variable

Let X be a real random variable. The distribution function of X is the function
Fx : R — [0, 1] defined by

Fx(t) :=P(X <t) = Py((—o0,1]), VieR.

It follows from Corollary 1.19 that Fx characterizes the law Py.

The function Fy is increasing, right-continuous and has limit 0 at —oo and 1
at +o0o. Conversely, if F : R — [0, 1] is a function having these properties,
Theorem 3.12 shows that there exists a (unique) probability measure ¢ on R such
that p((—oo, t]) = F(t) for every t € R. This shows that F can be interpreted as
the distribution function of a real random variable.

Let Fx(a—) denote the left limit of Fx ata € R. It is easy to verify that

Pla =X =b) =Fx(b) — Fx(a—) ifa <D,
Pla < X <b)=Fx(b—)— Fx(a) ifa <b.
In particular, P(X = a) = Fx(a) — Fx(a—) and thus jump times of Fx are exactly
the atoms of Py.
The following lemma uses distribution functions to construct a real random

variable with a prescribed law from a random variable uniformly distributed over
©, 1.

Lemma 8.7 Let v be a probability measure on R. For every x € R set G, (x) =
w((—oo, x1), and for every y € (0, 1), set

G,'(y) =inflx e R: G,(x) > y}.

Let Y be a random variable uniformly distributed on (0, 1), and X = G;l (Y). Then
PX = .
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Proof Note that the function G, is right-continuous. Then it follows from the
definition of Gljl that, for every x € R and y € (0, 1), the property G;l(y) <x
holds if and only if G, (x) > y. Hence, for every a € R,

P(X <a) =P(G,'(Y) <a) =P(Y < Gu(a)) = Gu(a).

Therefore we have Py ((—oo, a]) = u((—o00, a]) for every a € R and this implies
Px = u. O

8.1.7 The o-Field Generated by a Random Variable

We start with an important definition.

Definition 8.8 Let X be a random variable with values in a measurable space
(E, &). The o-field generated by X, which will be denoted by o (X), is the smallest
o-field on £2 for which the mapping w — X (w) is measurable. This o -field can be
written as

o(X)={X"'(B):Be&}CA.

The formula for o (X) is easy, since, on one hand the o-field generated by X
must contain all events of the form X ’1(B), B € &, and, on the other hand, the
collection of all such events forms a o -field.

The definition of ¢ (X) can be extended to an arbitrary collection (X;);e; of
random variables, where X; takes values in a measurable space (E;, &). In that
case,

o((Xdier) = ({X;'(B)) : Bi € &,i € I},

with the notation of Definition 1.2.

The next proposition shows that a real random variable is o (X)-measurable if
and only if it is a (measurable) function of X. This will be very useful when we
study conditioning in Chapter 11.

Proposition 8.9 Let X be a random variable with values in (E, &), and let Y be a
real random variable. The following are equivalent:

(1) Y is o (X)-measurable.
(ii) There exists a measurable function f from (E, &) into (R, B(R)) such that
Y = f(X).

Proof The fact that (ii)=-(i) is immediate since X is o (X)-measurable (by defini-
tion) and a composition of measurable functions is measurable.
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In the reverse direction, suppose that Y is o (X)-measurable. Consider first the
case where Y is a simple function, so that we can write

Y = Xn:)\; 14,
i=1

where the A;’s are distinct reals, and A; = Y~ '({A;}) € o(X) for every i €
{1,...,n}. Then, for every i € {1,...,n}, we can find B; € £ such that A; =
X~Y(B;), and we have

Y:Zn:)nilAizzn:)\;lBiOXZfOX,

i=1 i=1

where f =Y ""_, A; 1p, is E-measurable.

In the general case, we know that Y is the pointwise limit of a sequence (¥;),en
of simple random variables which are o (X)-measurable (Proposition 2.5). For every
n € N, we can write ¥;, = f;,(X), where the function f, : E — R is measurable.
We then set, for every x € E,

F00) lim f,(x) if the limit exists,
X)) = n—o0

0 otherwise.

The function f is measurable by Lemma 1.15. Furthermore, for every o € §2,
X (w) belongs to the set of all x € E such that lim f, (x) exists (because we know
that lim f;, (X (w)) = lim Y, (w) = Y (w)), and moreover

fX () = lim fu(X (@) =Y (o)

which gives the desired formula ¥ = f(X). O

8.2 Moments of Random Variables

8.2.1 Moments and Variance

Let X be a real random variable, and let p € N. The p-th moment of X is the
quantity E[ X 7], which is defined only if E[|X|”] < oo (or if X > 0). The quantity
E[|X]|”] is sometimes called the p-th absolute moment. Note that the first moment
of X is just the expected value of X, also called the mean of X. We say that X is
centered if (E[|X|] < oo and) E[X] = O (similarly, a random vector is centered if
its components are centered).
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Since the expected value is a special case of the integral with respect to a positive
measure, the results we saw in this more general setting apply and are of constant
use. In particular, if X is a random variable with values in [0, oo], we have by
Proposition 2.7,

e E[X]<oo = X <ooas.
e E[X]=0 = X =0a.s.

It is also worth restating the limit theorems of Chapter 2 in the language of
probability theory.

* Monotone convergence theorem. If (X,),eN i a sequence of random variables
with values in [0, oo],

X, 1t X as. = E[X,] 1 E[X].

* Fatou’s lemma. If (X,)nen 1s a sequence of random variables with values in
[0, o],

E[liminf X, ] < liminfE[X},].

* Dominated convergence theorem. If (X,),en is a sequence of real random
variables,

X, < Z, E[Z] < 00, Xn — X a.s. = E[|X, — X|] — 0, E[X,] — E[X].

Note that we stated a (straightforward) extension of the monotone convergence
theorem by allowing almost sure convergence instead of the pointwise convergence
in Theorem 2.4.

The spaces L”(§2, A, IP) are defined for every p € [1, oo] as in Chapter 4. The
Holder inequality (Theorem 4.1) states that, for every real random variables X and
Y,if p,q € (1, oo) are conjugate exponents ([1J + ; =1),

E[IXY|] < E[IX|71V/P E[|Y|9]"/4.

Taking Y = 1, we have | X |1 < [ X]p, whichis immediately generalized to || X||, <
X, if r < p. Clearly, we have also || X||, < [ X|l« for every p € [1,00).
Consequently, LP (2, A,P) C L"(§2, A,P) forany 1 <r < p < o0.

The scalar product on the Hilbert space L*(£2, A, P) is given by (X, Y),>» =
E[XY]. The Cauchy-Schwarz inequality gives

E[IXY ] < E[X*]'/?E[y*]'/?
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and the special case
E[|X|]* < E[X?],
is often useful.

Finally, Jensen’s inequality (Theorem 4.3) states that, if X € Ll(.Q, A, P), and
if f : R — R is convex, we have

ELf(X)] = fE[X]).

We now come to more “probabilistic” notions.

Definition 8.10 Let X < Lz(Q, A, P). The variance of X is
var(X) = E[(X —E[X])’] = 0
and the standard deviation of X is
ox = \/ var(X).

Informally, var(X) measures how much X is dispersed around its mean E[X].
We note that var(X) = 0 if and only if X is a.s. constant (equal to E[ X]).

Proposition 8.11 Let X € L*(2, A, P). Then var(X) = E[X?] — (E[X])?, and,
foreverya € R,

E[(X — a)?] = var(X) + (E[X] — a)>.
Consequently,

var(X) = inﬂg El(X — a)?].

Proof By expanding (X — a)? we get
E[(X — a)’] = E[X?] — 2a¢ E[X] + a* = E[X?] — (B[X])? + (E[X] — a)®.

We get the equality var(X) = E[X?] — (]E[X])2 by taking @ = E[X], and the other
two assertions immediately follow. O

Let us now state two famous (and useful) inequalities.

Markov’s Inequality If X is a nonnegative random variable and a > 0,
1
P(X >a) < E[X].
a

This is a special case of Proposition 2.7 (1).
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Bienaymé-Chebyshev Inequality If X € L>(22, A,P) anda > 0,
1
POX —E[X]| za) =, var(X).
a

This follows from Markov’s inequality applied to (X — E[X])2.
Definition 8.12 Let X, Y < Lz(Q, A, P). The covariance of X and Y is
cov(X,Y) = E[(X —E[XD(Y —-E[Y]D] = E[X (Y —E[Y]D] = E[XY]-E[X]E[Y].

If Z =(Zy,...,Zy) is a random vector with values in R whose components all
belong to L*(£2, A, P) (equivalently, E[|Z |2] < 0), the covariance matrix of Z is

KZ — (COV(Ziﬂ Zj))lsigd,lfjfd .

In a loose sense, the covariance of X and Y measures the correlation existing
between X and Y. Note that cov(X, X) = var(X) and that the Cauchy-Schwarz
inequality gives

[cov(X,Y)| < \/Var(X) \/Var(Y).
The mapping (X, Y) — cov(X, Y) is symmetric and bilinear on L2(.Q, A, P).

For a random vector Z = (Zi,...,Z4), the matrix Kz is symmetric and
nonnegative definite: for every Ay, ..., g € Rd,

d d
3 hikj KzG. ) = Valr(ZA,-Z,-) > 0.
ij=1 i=1

Set Z = Z—E[Z]. If we view 7 as acolumn vector, we can write K7 = ]E[z tz],

where, for any matrix M, ‘M denotes the transpose of M. Consequently, if A is an
n x d real matrix, and Z' = AZ, we have

Ky, =E[Z''Z'1=FE[AZ'Z'A]l = AE[Z'Z]'A = AK/'A. (8.2)

As a special case, if £ € R?, the scalar product £ - Z can be written as '£ Z in matrix
form, and we get

var(§ - Z) ="K z€. (8.3)
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8.2.2 Linear Regression

Let X,Y),...,Y, be real random variables in L%($2, A, P). We write ¥ =
(Y1, ..., Yy). We are looking for the “best” approximation of X as an affine function
of Y1, ..., Y,. More precisely, we are trying to minimize

E[(X — (Bo + B1Y1 + -+ Bu¥n))?]

over all possible choices of the (n + 1)-tuple of reals (Bo, ..., Bn).
Proposition 8.13 We have

inf  E[(X — (Bo+ Bi1Y1+ -+ BuYn)] = E[(X — 2)7],
Bos-...BneR

where

Z=E[X]+ ) a;¥;—E[Y;]), (8.4)
j=1

and the coefficients aj, 1 < j < n, are any solution of the linear system

n
D ajcov(Y V) =cov(X.Yy), 1<k<n.
j=1

In particular, if Ky is non-degenerate, we have a = cov(X,Y) K;l in matrix
notation (here cov(X, Y) stands for the vector (cov(X, Y;))1<j<n)-

Proof Let H be the (closed) linear subspace of L?(£2,.A,P) spanned by
1,Y1,...,Y,, or equivalently by 1, Y; — E[Y1],...,Y, — E[Y,]. Then, by the
classical theory of Hilbert spaces (Theorem A.3 in the Appendix), we know that
the random variable that minimizes || X — U||; over all U € H is the orthogonal
projection of X on H. A random variable Z € H can be written in the form

n
Z=ag+ Y a;(¥; —E[Y))),
j=1

where o, ..., o, € R. Then Z is equal to the orthogonal projection of X on H if
and only if X — Z is orthogonal to H, which holds if and only if we have both

E[(X -—Z)x1]=0, (8.5)
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and
E[(X —Z) x (Y —E[Y;}]D]=0, Vke{l,...,n} (8.6)

Property (8.5) holds if and only if g = E[X], and the equalities in (8.6) are satisfied
if and only if the coefficients «; solve the linear system stated in the proposition.
This completes the proof. O

Example If n = 1 and we assume that Y is not a.s. constant (so that var(Y) > 0),
we find that the best approximation (in the L? sense) of X by an affine function of
Yis

cov(X,Y)

Z = E[X] + var(Y) Y —E[Y)].

This affine function of Y is sometimes called the regression line of X in the
variable Y.

8.2.3 Characteristic Functions

We start with a basic definition. We use the notation x - y for the standard Euclidean
scalar product in R,

Definition 8.14 Let X be a random variable with values in R?. The characteristic
function of X is the function ®@x : R — C defined by

Ox(§) := Elexp(it - X)], & e R%.

Proposition 8.5 allows us to write
Px(€) = / e Py (dx)
R4

and we can also view @y as the Fourifr transform of the law Py of X. For this
reason, we sometimes write @x (&) = Px(£). As we already noticed in Chapter 2
(in the case d = 1), the dominated convergence theorem ensures that the function
@y is (bounded and) continuous on R,

Our first goal is to show that the characteristic function determines the law Px of
X (as the name suggests !). This is equivalent to showing that the Fourier transform
acting on probability measures on R is injective. We start with a useful calculation
in a special case.
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Lemma 8.15 Let X be a real random variable following the Gaussian N (m, %)
distribution. Then,

0_2%-2

Px(§) = explimg —

), & eR.

Proof We may assume that o > 0 and, replacing X by X —m, that m = 0. We have
then

1 2 2y -
Dx (&) =/ X707 plbx gy
5 R o+/27

Clearly, it is enough to consider the case 0 = 1. A parity argument shows that the
imaginary part of @y (§) is zero. It remains to compute

fé = /R \/;71 ¢~ /2 cos(£x) dx.

By differentiating under the integral sign (cf. Theorem 2.13), we get
FE) = — / L e sinEx) dx
R /27

L . . . 2 2 L
(the justification is easy since |x sin(§x)e™* 2| < |x|e™*/2, which is integrable
on R). An integration by parts shows that

1 2
/ = — - /2 = —
&= /R o e & cos(§x)dx § f(&).

The function f thus solves the differential equation f’(§) = —&f (&), with initial
condition f(0) = 1. It follows that f (&) = exp(—£2/2). O

Theorem 8.16 The characteristic function of a random variable X with values
in RY determines the law of this random variable. In other words, the Fourier
transform acting on probability measures on RY is injective.

Proof Let us consider the case d = 1. For every o > 0, let g, be the density of the
Gaussian AV (0, o2) distribution:

W= X eR
xX) = exp(— , X .
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Let u be a probability measure on R, and set

folx) = /R o (x — y) u(dy) ‘€ gy % (),

Mo (dx) = fo (x)dx.

Let Cp(R) denote the space of all bounded continuous functions ¢ : R — R,
and recall that a probability measure v on R is characterized by the values of
f ¢(x) v(dx) for ¢ € Cp(R) (see the discussion after Proposition 8.5). The result of
the theorem (when d = 1) will follow if we are able to prove that:

(1) 1o is determined by 7i.
(2) Forevery ¢ € Cp(R), [ @(x)pto(dx) —> [ @(x)pu(dx) as o — 0.

In order to establish (1), we use Lemma 8.15 to write, for every x € R,

2 .
0N/ g () = exp(—, ) = fR 5 8170 (6) dt.

It follows that
Fo0) = [ gne =ty = @2t [ ([ 0 g0 d iy
R R R
= @vam ! [ e [ e )
R R
= v [ ¢ e @ -

In the penultimate equality, we used the Fubini-Lebesgue theorem. The application
of this theorem is easily justified since p is a probability measure and the function
81/ 1s integrable with respect to Lebesgue measure. The formula of the last display
shows that f,; (and hence ) is determined by 1t.

As for (2), we start by writing, for every ¢ € Cp(R),

[ otoma@) = o ( [ et —xm@n)as = [( [ g~ x0mar) @)

=/ga *o(y)u(dy),
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where we have again applied the Fubini-Lebesgue theorem, with the same justifica-
tion as above. Then, we note that the properties

/gg(x)dx =1,

lim ge(x)dx =0, Ve > 0,

=0 J{|x|>e)

imply that, for every y € R,
lim g5 % @(y) = ¢(y)
o—0

thanks to Proposition 5.8 (i). By dominated convergence, using the fact that |g, *
¢l < sup{l(x)] : x € R}, we get

lim / POt () = Tim / g0 * 9((dy) = / () (dx),

which completes the proof of (2) and of the case d = 1 of the theorem.
The proof in the general case is similar. We now use the auxiliary functions

d
g1, xa) =[] 8o (x)
noting that, for £ = (§1,...,&y) € R,
[, e = H f g0 () 5% dx; = /o225 %) ).

The arguments of the case d = 1 then apply with obvious changes. O

Proposition 8.17 Let X = (Xy,..., X4) be a random variable with values in
R4, Assume that E[(Xj)z] < oo for every j € {1,...,d}. Then, @x is twice
continuously differentiable and

d d d
Px(E)=1+1) &EIX)] ZZ JECELX Xk]+ o(€]%)

j=1 j=1k=1

when & = (&1, ...,&) tends to O.
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Proof By differentiating under the integral sign (Theorem 2.13), we get, for every
l<j=d,

I , .
asj‘ (&) = iE[X;e5¥].

The justification is easy since |inei§'X| = |X;l and X; € L*(2, A P) C
Ll(.Q,.A, P). Similarly, for every j,k € {l,...,d}, the fact that X;X; €
L'(£2, A, P) allows us to differentiate once more and to get

2Dy

- _ X, el X
staék(g)_ E[X;Xge® "]

Moreover Theorem 2.12 (or more directly the dominated convergence theorem)
ensures that the quantity E[X ; X «e' X1 is a continuous function of &. We have thus
proved that @x is twice continuously differentiable.

Finally, the last assertion of the proposition is just Taylor’s expansion of @y at
order two at the origin. O

Remark If we assume that E[|X|P] < oo, for some integer p > 1, the same
argument shows that @y is p times continuously differentiable. The case p = 2
will however be most useful in what follows.

8.2.4 Laplace Transform and Generating Functions

For a random variable with values in R4, one often uses the Laplace transform
instead of the characteristic function.

Definition 8.18 Let X be a nonnegative random variable. The Laplace transform of
(the law of) X is the function Ly defined on R by

Lx(\) = E[e—”‘]=/ e Py (dx).
Ry

The dominated convergence theorem (or Theorem 2.12) shows that Ly is
continuous on [0, c0). An application of the theorem of differentiation under the
integral sign shows that L x is infinitely differentiable on (0, co). The function Lx

is also convex (as a consequence of the fact that the functions A —> e~** are convex,
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for every x > 0) and thus has a (possibly infinite) right derivative at 0, which is given
by

-1 X

, _ . 1—e _
L)y (0) = —%E[ X ] — _E[X]

where the second equality follows from the monotone convergence theorem.

Theorem 8.19 If X is a nonnegative random variable, the Laplace transform of X
determines the law Py of X.

Remark As in the case of characteristic functions, this statement is equivalent to the
injectivity of the Laplace transform acting on probability measures on R .

Proof Suppose X and X’ are two nonnegative random variables, and that Ly =
L. Forevery A > 0 and every x > 0, set ¥, (x) = e~ We extend the functions
Y, to [0, oo] by continuity, setting ¥ (co) = 0 if A > 0, and Yp(c0) = 1.

Let H be the vector space spanned by the functions ¥;, A > 0. Then H is
a subspace of the space C ([0, co], R) of all real continuous functions on [0, oo],
which is equipped with the topology of uniform convergence. Moreover, the Stone-
Weierstrass theorem ensures that H is dense in C([0, co], R).

The equality Ly = Ly implies that E[¢(X)] = E[¢(X')] for every ¢ € H.
On the other hand, the mapping ¢ +— E[¢(X)] = [ ¢ dPx is clearly continuous
on C([0, co], R). Since H is dense, it follows that we have E[v(X)] = E[y(X")]
for every ¥ € C([0, 0o], R), and in particular E[y(X)] = E[¥(X')] for every
continuous function ¥ : Ry — R with compact support, which suffices to say
that Py = Py. ]

Finally, in the case of integer-valued random variables, one often uses generating
functions.

Definition 8.20 Let X be a random variable with values in Z,. The generating
function of X is the function gy : [0, 1] — [0, 1] defined by

gx(r) = E[r¥] = ZP(X =n)r.
n=0

Note that gx(0) = P(X = 0) and gx(1) = 1. The function gx is continuous
on [0, 1]. Since the radius of convergence of the series in the definition is at least 1,
the function gx is infinitely differentiable on [0, 1). Moreover, it is obvious that gx
determines Py, since the quantities P(X = n) appear in the Taylor expansion of gx
at the origin.

The derivative of gy is

gy(r) = ZnP(X =n)r"!

n=1
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for r € [0, 1). It follows that gx has a (possibly infinite) left-derivative at r = 1,
and

gk(1) =Y nP(X =n) =E[X].
n=1

More generally, for every integer p > 1, if ggf) denotes the p-th derivative of gx,

lig;g&")(r) =E[X(X—1)---(X — p+ 1]

which shows how to recover all moments of X from the knowledge of its generating
function.

8.3 Exercises

Exercise 8.1 Consider a population of n individuals and r € {1, ...,n — 1}.

(1) Give a probability space for the random experiment consisting in choosing at
random a sample of r individuals in the population.

(2) Suppose that the population is composed of individuals of two types, with n;
individuals of type 1 and n; individuals of type 2 (where n1 4+ ny = n). Let X
be the number of individuals of type 1 in the sample. Prove that the law of X is
given by

(¥)(2)
()

for every k € {0, 1,...,r} (we make the convention that (lj‘) =0if j > k).
This is the so-called hypergeometric distribution.

(3) Show that, when n, n1, np — oo in such a way that n/n tends to p € (0, 1),
and r remains fixed, the law of X becomes close to the binomial B(r, p)
distribution. Interpret this result.

P(X = k) =

Exercise 8.2 Letn > 1 and r > 1 be integers. Suppose that we have n balls and r
compartments numbered 1,2, ..., 7.

(1) Give a probability space for the random experiment consisting in placing the
n balls at random in the » compartments (each ball is placed in one of the r
compartments chosen at random). Compute the law p, , of the number of balls
placed in the first compartment.

(2) Show that, when r, n — o0 in such a way that r/n — X € (0, 00), the law
Wr.n becomes close to the Poisson distribution with parameter A.
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Exercise 8.3

(1) Let Ay, ..., A, be n events in a probability space (£2, A, P). Prove that

P(OAi>=Xn:(—1)k“ Z P(A;, N...NAj).
i=1

k=1 I<ji<..<jk=n

This is called the inclusion-exclusion formula.

(2) Consider a group of n persons attending a lecture. Each person wears a hat and
leaves it in a dark cloakroom before the lecture. After the lecture, the members
of the group come successively to the cloakroom and each of them picks a hat
at random among the remaining ones. What is the probability that at least one
person of the group picks the hat he or she was wearing before the lecture ?
What is the limit of this probability when n — oo ? Interpret and reprove the
result of the calculation in terms of the group of permutations of n elements.

Exercise 8.4 (Ballot Theorem) In an election, candidate A has obtained a votes
and candidate B has obtained b votes, where a > b. The scrutineer proceeds to the
counting of votes by reading the ballot papers one after the other in a random order.
Prove that the probability that candidate A has strictly more votes than candidate
B at each step of the counting process is (@ — b)/(a + b). (Hint: Represent the
difference between votes for A and votes for B during the counting process by a
discrete function from {0, 1, ..., a 4+ b} into Z that starts from 0, has jumps of size
+1 or —1 and terminates at a — b. Then note that the probability of occurrence of
any such function is the same, so that the problem reduces to enumerating those
among these functions that stay positive on {1, ..., a + b}.)

Exercise 8.5 Following the description of Bertrand’s paradox in Section 8.1.4, treat
the third method that had been proposed by Bertrand: one first chooses the ray
carrying the center of the chord, and then a point uniformly distributed on this ray to
be the center of the chord. Give the probability space corresponding to this method
and compute the law of the length of the chord.

Exercise 8.6 Let X = (X, X3, ..., X4) be a random vector with values in R,
Assume that the law of X has a density px(xy, ..., xg). Compute the density of the
random variable X| 4+ X7 in terms of the function py.

Exercise 8.7 Let N be a Gaussian N (0, 1) random variable. Compute the law of
1/N2. (This is the so-called stable (1/2) distribution, which we shall encounter in
Chapter 14).

Exercise 8.8 Let (X, Y) be a random variable with values in R? whose law has a
density given by p(x, y) = 1g2 (x, ) Ape 7MY where A, u > 0. Compute the
law of U = max(X, Y), of V = min(X, Y) and of the pair (U, V).
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Exercise 8.9 Suppose that a light source is located at the point (—1, 0) of the plane.
Let 8 be uniformly distributed over the interval (—m /2, 7/2). The light source emits
a ray in the direction of the vertical coordinate axis making an angle 6 with the
horizontal axis. Determine the law of the point of the vertical axis that is hit by the
ray.

Exercise 8.10 Let X be a real random variable, and let F' = Fx be its distribution
function. Assume that the law of X has no atoms. What is the distribution of the
random variable Y = F(X) ? (Compare with Lemma 8.7).

Exercise 8.11 Determine the o-field generated by X in the following two cases:

D (22,4 = R, BR)) and X (w) = o?.
(i) (82, A) = (R%, B(R?)), and

wrw2 .
) 2 if (w1, ) # (0,0), and X (0,0) = 0.
Gh + w5

X (w1, w2) =

Exercise 8.12 Let X be a real random variable. Assume that X is integrable
(E[1X]] < o0). Prove that

A E[X] Lyjx 2] = 0.

Exercise 8.13

(1) Let (X,)nen be a sequence of nonnegative random variables in L?. Assume that
the sequence (X, ),cN is increasing and that

var(Xy) _

E[X,] — 400, liminf =0.
n—o0

00 E[X,]?

Prove that X,, — 400 a.s. asn — 00.
(2) Let (An)nen be a sequence of events. Prove that the conditions

ad 1> =1 P(AjNA
> P(Ay) =00, fiminf 207! an_l W ) g
— n—00 (Zk=1 P(Ax))

oo
imply that ZIA" =00, as.

n=1
Exercise 8.14 Let (X, X5, ..., Xy4) be arandom vector with values in R4,
(1) Prove that one can uniquely define real random variables Y1, Y», ..., Yy such

that, for every w € 2, Y1(0) < Ya(w) < --- < Yy(w), and, for every w € £2
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and x € R, thesets {i € {1,...,d} : Xij(w) = x}and {i € {1,...,d} :

Y; (w) = x} have the same cardinality. The random vector (Y7, ..., Yy) is called
the increasing reordering of (X1, ..., Xg).
(2) Suppose that (X, ..., Xg) has density p(x1,...,xq) = 1y 1¢(x1, ..., Xa).
Show that the random vector (Y7, ..., Yy4) has density
g(x1, ..., xa) = d! lo<x;<xy<w<xg<l}-

(3) Suppose that d = 3 and that (X1, X2, X3) has density p(x) = 1[0’1]3 (x) for
x € R3. Compute the law of the pair (Y1/Y2, Y2/Y3).

Exercise 8.15 Let (X,),cz be random variables in L? such that, for every n, m €
Z’

E[X,)=a, cov(X, Xm)=bp"m ",

where a, b, p are reals such that » > 0 and |p| < 1. Let F be the closed linear
subspace of L? spanned by the variables X,, for n < 0 and the constant variable 1.
Show that, for every integer m > 1,

. 2] v 2
I}relglE[(Xm Y)1=El(Xm — Ym)"l,

where Y, = a + p" (X9 — a).

Exercise 8.16 Compute the generating function of the integer-valued random
variable X in the following three cases:

(i) X is binomial B(n, p) where n € Nand p € [0, 1].
(i) X is geometric with parameter p € (0, 1).
(iii) X is Poisson with parameter A > 0.



Chapter 9 )
Independence Sheiie

The concept of independence is the first important notion of probability theory that
is not a simple adaptation of similar notions in measure theory. If it is easier to
have an intuitive understanding of what the independence of two events or of two
random variables means, the most fundamental concept is the independence of two
(or several) o-fields.

A key result relates the independence of two random variables to the fact that
the law of the pair made of these two variables is equal to the product measure
of the individual laws. Together with the Fubini theorem, this leads to useful
reformulations of the notion of independence. We establish the famous Borel-
Cantelli lemma, and as an application we derive surprising properties of the dyadic
expansion of a real number chosen at random. We use Lebesgue measure and this
dyadic expansion to give an elementary construction of sequences of independent
(real) random variables, which suffices for our needs in the following chapters. We
pay special attention to sums of independent and identically distributed random
variables. In particular we give a first version of the law of large numbers, which
provides a link between our axiomatic presentation of probability theory and the
“historical” approach, where the probability of an event is the asymptotic frequency
of occurence of this event when the random experiment is repeated a large number of
times. The last section, which may be omitted at first reading, is a brief presentation
of the Poisson process, which illustrates many of the notions introduced in this
chapter.
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168 9 Independence
9.1 Independent Events

Throughout this chapter, we consider a probability space (2, A,P).If A,B € A
are two events, we say that A and B are independent if

P(A N B) = P(A)P(B).

If P(B) > 0, we can interpret this definition by saying that the conditional
probability

n P(ANB
P(A | B) (def) (P(B) )

is equal to P(A): knowing that B holds gives no information on whether A holds or
not (and the roles of A and B can be interchanged).

Examples

(i) Throwing two dice: 2 = {1,2, ...,6}%, P({w}) = 1/36 for every w € §2. The
events A = {6} x {1,2,..., 6} (6 at the first trial) and B = {1, 2, ..., 6} x {6}
(6 at the second trial) are independent. In fact the probability measure P has
been constructed so that any event concerning the first trial is independent of
any event concerning the second trial.

(i) Throwing one die : 2 = {1,2,...,6}, P({w}) = 1/6 for every v € §2. The
events A = {1, 2} and B = {1, 3, 5} are independent.

Definition 9.1 We say that n events Ay, ..., A, are independent if, for every
nonempty subset {ji, ..., jp} of {1, ..., n}, we have

P(A;, NAj, ﬂ...ﬂAjp) ZP(Ajl)P(Ajz)...P(Ajp).

Remark 1tis notenough to assume that, for every pair {i, j} C {1, ..., n}, theevents
A; and A are independent. To give an example, consider two trials of coin-tossing
with a fair coin (probability 1/2 of having heads or tails). Let

A1 = {heads at the first trial}

A, = {heads at the second trial}

A, = {same outcome at both trials}.

Then A; and A; are independentif i # j, but P(A1 N A2 NA3) =1/4#1/8 =
P(ADP(A2)P(A3).
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Proposition 9.2 The n events Ay, ..., A, are independent if and only if we have
P(BiN...NB,) =P(By)...P(By)

whenever B; € o (A;) = {9, A;, Al‘f, 2}, foreveryi € {1,...,n}.

Proof The condition given in the proposition is stronger than our definition of

independence: just take B; = A; if i € {ji1,..., jp} and B; = §2 otherwise. So
we need to verify that the condition in the proposition holds if Aq,..., A, are
independent. Clearly, we may assume that B; # & forevery i € {1, ..., n}. Then,

if {ji,..., jp} = {i : Bi # 2}, we have to check that

P(le N Bj, ﬂ...ﬂij) ZP(le)P(sz)...]P)(ij),

as soonas Bj, = Aj, or Aj.k, for every k € {1, ..., p}. Finally, it suffices to verify
that, if Cy, C2, ..., C), are independent, then so are Cf, Ca,...,Cp. This is easy
since, for every subset {i, ...,i,} de {2, ..., p},

P(CiNnCy,N---NC,) =P(C;yN---NC;) =P(C1NC;y N---NCi)
=P(Cy)...P(Ci,) —P(C)HP(Cyy) ... P(C;,)
=P(CHP(Cyy) ... P(Ci,).

9.2 Independence for o-Fields and Random Variables

We say that B is a sub-o-field of A if 5 is a o-field and B C .A. Roughly speaking,
a sub-o-field B corresponds to some partial information in the probability space,
namely the information given by knowing which events in B have occurred (for
instance, if B = o (X) where X is a random variable, the corresponding information
is just the value of X). This suggests that the most general notion of independence
is that of independent sub-o-fields: informally, two sub-o-fields B and B’ will
be independent if knowing which events of B have occurred does not give any
information on the occurrence of events of 5, and conversely. We make this more
precise in the following definition.

Definition 9.3 Let By, ..., B, be n sub-o-fields of .A. We say that By, ..., B, are
independent if, for every A} € By, Ay € By, ..., A, € B,

P(A1 NA2N...NA) = P(A) P(A2) ... P(Ay).
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Let X1,..., X, be n random variables taking values in (Eq, &), ..., (Ey, &)

respectively. We say that the random variables X1, ..., X,, are independent if the
o-fields 0(X1),...,0(X,) are independent. This is equivalent to saying that the
property

P{Xie FiiN..N{X, e ;) =PX1€ F1)...P(X, € F) 9.1

holds for every F| € &1, ..., F, € &,.

The fact that (9.1) is equivalent to the independence of o (X1),...,0(X,) is
clear since o (X ;) = {Xj_l(F) i F e &}, forevery j € {1,..., p}, as we saw in
Section 8.1.7. Informally, the random variables X7, ..., X, are independent if the
knowledge of a subset of these variables does not give information on the remaining
ones.

It will also be useful to consider the independence of several (finite or infinite)
collections of random variables, which is defined in the obvious manner. For
instance, two collections (X;);es and (Y;) jey of random variables are independent
if the o -fields o ((X;);er) and o ((Y}) jes) are independent. Note that this is stronger
than just saying that X; and Y; are independent for everyi € I and j € J.

Remarks

(i) If By,...,B, are n independent sub-o-fields of A, and if, for every i €
{1,...,n}, X; is a B;-measurable random variable, then Xi,..., X, are
independent (this is obvious since saying that X; is B;-measurable is equivalent
to o (X;) C B;p).

(ii)) The n events Aj,...,A, are independent if and only if the o-fields
o(Ay), ..., 0(Ap) are independent (Proposition 9.2).

The next theorem gives a very important characterization of the independence of
n random variables. Before stating this theorem, we observe that, if X1, ..., X, are
n random variables taking values in (E1, &1), . . ., (E,, &,) respectively, the n-tuple
(X1, ..., Xn) is a random variable with values in E1 x --- x E, equipped with
the product o-field &1 ® - - - ® &, (see Lemma 1.12). Recall the notion of product
measure introduced in Chapter 5.

Theorem 9.4 Let X1, ..., X,, be random variables taking values in (E1, &), ...,

(En, &) respectively. Then X1, . .., X, are independent if and only if the law of the

n-tuple (X1, ..., X,) is the product measure of the respective laws of X1, ..., Xp,
Pxyxn) =Px; ® - @ Px,.

Moreover, we have then

B[ [TA0] =TELAx0 ©92)
i=1 i=1
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whenever f; is a nonnegative measurable function on (E;, &;), for every i €
{1, ..., n} (note that the convention 0 x oo = 0 is used here as elsewhere).

Proof Let F; € &, foreveryi € {1,...,n}. On one hand,
Bxy,.ox)(F1 X - X Fp) =P({X1 € Fi}N...N{X, € Fy})

and on the other hand,

n n
Py, ® -+ @ Py, (F1 x -+ x F) = [ [ Px,(F)) = [ [P(X; € Fy).
i=1 i=1

Comparing with (9.1), we set that X1, ..., X, are independent if and only if the two
probability measures Py, . x,) and Px, ® - - - ® Py, take the same values on boxes
Fy x .-+ x F,. This is equivalent to saying that Px, . x, =Px, ®---®Px,, since
we know that a probability measure on a product space is characterized by its values
on boxes (as a straightforward consequence of Corollary 1.19).

The second assertion is then a consequence of the Fubini theorem:

E[[Trx0] = /E [T /@0 By, @x) .. Py, @x)
i=1

1 XX Ep i=1
n
=1] / £i (i) Py, (dxy)
i=17Ei

= [[ELs ol

i=1

Let us briefly discuss some useful extensions of formula (9.2).

(i) As in Theorem 5.3, we can allow the functions f; to take values in [0, o]
in (9.2).

(i) For functions f; of arbitrary sign, formula (9.2) is still valid provided
E[|fi (Xi)|] < oo foreveryi € {1, ..., n}, noting that this implies

IE[]_[ |fi(Xi)|:| = [ [EIlI£i (X))l < o0,
i=1

i=1

which justifies the existence of the expected value in the left-hand side
of (9.2). Similarly, (9.2) holds for complex-valued functions f; under the same
integrability condition.
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(iii) As a special case of (ii), if X1, ..., X, are independent real random variables
in L', we have also X1---X, € L', and

E[X; - Xa] = [ [ BIXi1.
i=1

Note that, in general, a product of random variables in L' may not belong to
L.

Theorem 9.4 also shows how to construct (finitely many) independent random
variables. Consider the case of real random variables. Let u1, ..., u, be n proba-
bility measures on R. As we observed in the previous chapter after Definition 8.2,
we can construct a random variable Y = (Y1, ..., Y,) with values in R"” whose law
iS 1 ®---® wuy. Then Theorem 9.4 implies that the components Yq, ...Y, of Y are
independent real random variables with respective laws p1, ..., iUy.

Let us turn to the relation between independence and covariance.

Corollary 9.5 If X1, X» are two independent real random variables in L2, then
cov(Xy, X2) =0.

This follows from the preceding remarks since cov(Xi, X2) = E[X1X2] —
E[X]E[X2].

The converse to the corollary is false. The property cov(X, X2) = 0 is much
weaker than the independence of X and X». To give a simple example, let X be
a real random variable having a symmetric density p(x) = p(—x) and such that
f x? p(x)dx < oo (so that X; € L?). Let Y be another random variable, with
values in {—1, 1}, such that P(Y = 1) = P(Y = —1) = é, and assume that Y is
independent of X ;. Then, setting X, = €X1, we easily get

cov(X1, X2) = E[X; X2] = E[Y (X1)*] = E[Y]E[(X1)?] = 0,

but X and X are not independent. Indeed, if X; and X, were independent, | X |
would be independent of |X»2| = |X], and it is easy to see that a real random
variable cannot be independent of itself unless it is constant a.s.

Corollary 9.6 Let X1, ..., X, be n real random variables.

(1) Suppose that, for every i € {l,...,n}, X; has a density denoted by p;,
and that the random variables X1, ..., X,, are independent. Then, the n-tuple
(X1, ..., Xn) has a density given by

i=1
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(ii) Conversely, suppose that (X1, ..., X,) has a density p which can be written in
the form

n
p(xlv -'-1xn) = l_lqi(-xi)s
i=1

where q1,...,qn are nonnegative measurable functions on R. Then, the
random variables X1, ..., X, are independent and, for everyi € {1,...,n},
X; has a density p; of the form p; = C; g;, where C; > 0 is a constant.

Proof Part (i) is an immediate consequence of Theorem 9.4, since the Fubini
theorem readily shows that, under the assumption Py, (dx;) = p;(x;)dx; fori €
{1,...,n}, we have

n
Py, ® - ®Px,(dxy...dx,) = (Hp,(x,))d)q coodxg.
i=1

As for (i), we first observe that, thanks again to the Fubini theorem,

n

H(/qi(x)dx) :/R" px1, ..., xp)dxy...dx, =1,

i=1

and in particular the quantity K; = [ ¢;(x)dx is positive and finite, for every i €
{1, ..., n}. Then, by Proposition 8.6, the density of X; is

pi(xi) = / px1, ..., xp)dxy...dx;1dxiyy ..., dx, = (l—[ Kj)q,'(x,')
Rnfl /;ﬁl
1
= KiCIi(xi)s

giving the desired form p; = C; g;, with C; = 1/K;. This also allows us to rewrite
the density of (X1, ..., X,) in the form

ptx) =] Jai) =] [ pit)
i=1 i=1

and we see that Py, x,) = Px; ® --- ® Py, sothat Xy, ..., X, are independent.

O

,,,,,
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Example Let U be a random variable following the exponential distribution with
parameter 1 and let V be uniformly distributed over [0, 1]. Assume that U and V
are independent. Then, if we set

X =+U cos@rV), Y =+U sin2rV),

X and Y are independent real random variables. To verify this, let us compute the
law of (X, Y). For every nonnegative measurable function ¢ on R?, we have

oo 1
Elp(X, V)] = / / 0 (/1 cos(2mv), /usinmrv)) e dudv
o Jo
1 oo p2m )
= / / @(rcosf, rsin®)re”" drdd
T Jo 0
1 )
= / o(x, y)e ¥ 77 dxdy.
T JRrR2

We thus obtain that the pair (X, Y) has density s exp(—x2 — y2) which has
a product form as in part (ii) of Proposition 9.6. It follows that X and Y are

—x2

independent (and we also see that X and Y have the same density jne and

thus follow the N (0, 1/2) distribution).
We now state a very useful technical result.

Proposition 9.7 Let B, ..., B, be sub-o-fields of A. Foreveryi € {1, ...,n}, let
Ci C B; be a class closed under finite intersections, containing 2 and such that
o (C;) = B;. Assume that

VCi€(C,...,.YC, €Cy, P(C1NCyN...NCp) =P(CP(Cy)...P(Cp).

Then the o -fields By, . .., B, are independent.

Proof Letus first fix C; € C, ..., C, € Cy, and set

Mi={B eB:P(BINCyN...NCy) =P(B))P(Cy)...P(Cy)}.
Then C; C M by assumption, and on the other hand, it is easy to see that
M is a monotone class as defined in Section 1.4. The monotone class theorem
(Theorem 1.18) then implies that M contains o (C;) = B1, and we have proved
VB € B1,C€Cy,...,ChelCy, P(BINCyN...NCp) = P(B)P(Cr)...P(Cp).

To proceed, we now fix By € By, C3 € C3, ..., C, € C, and we set

Moy={BeB:P(BiNByNC3N...NCy) =P(B)P(By) P(C3)...P(Cp)}.
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Again M3 is a monotone class, which contains C,, and it follows that M, contains
0 (C2) = B,. By induction, we arrive at the property

VB1eBi,Bye By, ...,B, € B,, P(BiNB,N...NB,) = P(B)P(By)...P(B,),
which means that By, ..., B3, are independent. |

Consequence: Grouping by Blocks Recall that, if Ay, ..., Ay are o-fields, A; v
Ay v -+ v Ay denotes the smallest o-field that contains A; U A, U --- U Ayg. Let
B, ..., B, be independent o-fields, and let np = 0 < n; < --- < np = n. Then
the o -fields

Dl =Blv---vB,,l

Dy =Bpy41 V-V By,

DP:B"p—H‘l\/'“\/Bnp

are independent. This can be deduced from Proposition 9.7. For every j €
{1,..., p}, welet C; be the class of all sets of the form

By 410+ 0 By,

where B; € B; for every i € {nj_1 + 1,...,n;}. Then the assumptions of
Proposition 9.7 hold for Cy ..., C), and since D; = o (C;) forevery j € {1, ..., p},
we get the desired result.

In particular, if X1, ..., X, are independent, the random variables

Yl = (le cee X}’l[)v Y2 = (Xn1+17 ...,an), LN Yp = (an71+11 '-~7an)

are independent.

Example If X1, ..., X4 are independent real random variables, the random vari-
ables Z1 = X1 X3 and Z, = X% + X4 are independent.

The next proposition uses Proposition 9.7 and Theorem 8.16 to give different
characterizations of the independence of real random variables.

Proposition 9.8 Let X1, ..., X, be n real random variables. The following are
equivalent:

(i) Xi,..., X, are independent.

n
(i) Foreveryay,...,ay, € R, P(X1 <ay,..., Xy, <ap) = HP(X,' < a;).
i=1
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(i) Let fi, ..., fu be continuous functions with compact support from R into R..
Then,

n

IE“—[ fixo| = TTEL X0l
i=1

i=1

(iv) The characteristic function of the random vector X = (X1, ..., X;) is

Dx (&1, &) =[x &)
i=1

Proof The fact that (i) implies both (ii) and (iii) follows from Theorem 9.4.
Conversely, to show that (iii) implies (i), we note that the indicator function of
an open interval is the increasing limit of a sequence of continuous functions
with compact support. By monotone convergence, it follows that the property
P{X1 € Fi}N---N{X, € F,}) = P(X1 € F1)---P(X,, € F,) holds when
Fi, ..., F, are open intervals. Then we just have to apply Proposition 9.7, taking
for C; the class of all {X; € F}, F open interval of R (observe that this class
generates o (X j)). The proof that (ii) implies (i) is similar.

To show the equivalence between (i) and (iv), we note that the Fourier transform
of the product measure Py, ® - - - ® Py, is

GRS |—>/exp (iZ%'jxj>PXl(dx1) ... Py (dxn)
=1

= ]‘[/ei%‘fxfpxj (dxj) = [[ox;&n
j=1

j=1

using the Fubini theorem in the first equality. Hence the property (iv) is equivalent to
the fact that the Fourier transform of Py, .. x,) coincides with the Fourier transform
of Px, ® - - - ® Px,. By Theorem 8.16, this holds if and only if Py, x,) =Px, ®
--- ® Px,, which is equivalent to the independence of X1, ..., X,, by Theorem 9.4.

O

In forthcoming applications, it will be important to consider the independence of
infinitely many random variables.

Definition 9.9 (Independence of an Infinite Family) Let (5;);c; be an arbitrary
collection of sub-o -fields of .A. We say that the o-fields B5;,i € I, are independent if,
for every finite subset {i1, ..., i,} of I, the o-fields B;, ..., B,-p are independent.
If (Xi)ier is an arbitrary collection of random variables, we say that the random
variables X;, i € I, are independent if the o-fields o (X;), i € I, are independent.
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Similarly, for an infinite collection (A;);e; of events, we say that the events A;,
i € I, are independent if the o-fields o (A;), i € I, are independent.

The grouping by blocks principle can be extended to infinite collections of
random variables. Rather than stating a general result, we give a simple example
of such extensions, which will be useful later in this chapter.

Proposition 9.10 Ler (X,),en be a sequence of independent random variables.
Then, for every p € N, the o-fields

BIZG(Xl,...,Xp), BZZU(X[)+17X[7+27--)

are independent.

Proof We apply Proposition 9.7 with

Clzd(X1,...,Xp)=B1
S

C = U o(Xps1, Xpy2, ..., Xp) C B
k:p—‘,—l

and we note that the assumption in this proposition holds thanks to the grouping by
blocks principle. O

The reader will be able to formulate extensions of the last proposition involving
disjoint (finite or infinite) blocks in an infinite collection of independent random
variables. The proof always relies on applications of Proposition 9.7.

Recall that two (finite or infinite) collections (X;);es and (Y;)jes of random
variables are independent if the o-fields o ((X;)ies) and o ((¥;)jes) are indepen-
dent. This property holds if and only if, for every finite subset {iy,...,i,} of I
and every finite subset {j1, ..., j;} of J, the p-tuple (X;,, ..., Xip) and the g-tuple
(Yj,, ..., Yj,) are independent. Once again, the latter fact is an easy application of
Proposition 9.7 and we omit the details.

9.3 The Borel-Cantelli Lemma

Recall that, if (A, ),en is a sequence of events, we write

oo 0

limsup A, = ﬂ ( Ak).
=n

n=1 k

The event lim sup A, consists of those w that belong to infinitely many of the sets
Ajp. Note that Lemma 1.7 gives P(limsup A,,) > limsupP(A,).
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Lemma 9.11 Let (A,)neN be a sequence of events.
() IfY,en P(An) < o0, then
P(imsup A,) =0
or equivalently,
{n e N:w e A} is a.s. finite.
(i) If Y, enP(A,) = oo and if the events A, n € N, are independent, then
P(limsup A,) =1
or equivalently
{n e N:w e A,} est a.s. infinite.

Remark The independence assumption, or another suitable assumption, is needed
in (ii), as can be seen from the trivial example where A,, = A for every n € N, with
0 < P(A) < 1. See Exercise 8.13 for an extension of part (ii) of the lemma where
the independence assumption is replaced by a weaker one.

Proof
() If Y ,enP(A,) < 0o, then

E[ZlA,,] =Y P(A) < 0

neN neN

and thus ), 14, < oo a.s., which exactly means that {n € N : w € A,} is
a.s. finite.
(i1)) Fix ng € N, and observe that, if n > n,

]P( N A;) = [ Bcap = [T —Baw.
k=ng k=ng k=ng

The fact that the series Y P(Ag) diverges implies that the right-hand side tends
to 0 as n — oo. Consequently,
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Since this holds for every no € N, we have also

2(U () 45)) =0

no=1 k=ng

and, by considering the complementary set,

IR

which was the desired result.

O

Two Applications (1) One cannot find a probability measure I’ on N such that, for
every integer n > 1, the probability of the set of all multiples of n is equal to 1/n.
Indeed suppose that there exists such a probability measure PP. Let P denote the set
of all prime numbers, and, for every p € P, let A, = pN be the set of all multiples
of p. Then it is easy to see that the sets A,, p € P, are independent under the
probability measure P. Indeed, if py, ..., px are distinct prime numbers, we have

P(Ap, N...NAp) =P(piNN...0 pN) =P((p1 ... p)N)

1 k
= =[]®r@,).
P1--- Dk e
On the other hand, we have
1
PIEITRED D
peP peP P

We can then apply part (ii) of the Borel-Cantelli lemma to obtain that P-almost
every integer n € N belongs to infinitely many sets A, and is therefore a multiple
of infinitely many prime numbers, which is absurd.

(2) Suppose now that

(£2, A, P) = ([0, 1), B([0, 1)), ),
where A denotes Lebesgue measure. For every n € N, set
Vo €[0,1).  Xa(@) = [2"0] —2(2" o),

where |x] denotes the integer part of the real number x. Then X, (w) € {0, 1} and
one easily verifies by induction on #n that, for every w € [0, 1),

n
0<w- ZXk(a))ka <27
k=1
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which shows that

=Y X2

k=1

The numbers Xy (w) are the coefficients of the (proper) dyadic expansion of w. By
writing explicitly the set {X, = 1} one checks that, for every n € N,

P(X, =0)=P(X, = 1) = I

2
Finally, we observe that the random variables X, n € N are independent. In fact, it
is enough to verify that, for every iy, ..., i, € {0, 1}, one has
1 p
PO =it Xp=ip) = = l—[l]P’(Xj =ij).
]=

However, one immediately sees that

and the desired result follows.
Let p € Nandletiy, ..., i, € {0, 1}. Then we can use the Borel-Cantelli lemma
to prove that

cardfk > 0: Xpq1 =i1,..., Xjyp =ip} =00 as. 9.3)
This shows that a given finite sequence of 0 and 1 appears infinitely many times

in the dyadic expansion of Lebesgue almost every real of [0, 1). In order to
establish (9.3), set, for every n € Z,,

Y, = (an+la an+2a ceey an+p)-
The grouping by blocks principle shows that the random variables Y,,, n € Z., are

independent and then the desired result follows from an application of the Borel-
Cantelli lemma to the events

An = {Yn = (lla -'-aip)}a

which are independent and all have probability 277.
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Since a countable union of events of probability zero still has probability zero,
we can reinforce (9.3) as follows: it is a.s. true that

Vp>1, Viy,...,ip €{0,1}, card{fk > 0: Xpq1 =i1,..., Xpyp =ip} = 00.

In other words, for a real x chosen at random in [0, 1), any finite sequence of 0 and
1 appears infinitely many times in the dyadic expansion of x.

9.4 Construction of Independent Sequences

Many of the developments that follow are devoted to the study of sequences of
independent and identically distributed random variables. An obvious question is the
existence of such sequences on an appropriate probability space. The natural way
to answer this question would be to extend the construction of product measures
to infinite products, so that we can then proceed as outlined after the proof of
Proposition 9.4, when we explained how to construct finitely many independent
random variables. As the construction of measures on infinite products involves
some measure-theoretic difficulties, we present here a more elementary approach,
which is limited to real variables but will be sufficient for our needs in the present
book (even for the construction of Brownian motion in Chapter 14).
We consider the probability space

(82, A,IP) = ([0, 1), B([0, 1)), 1).
As we have just seen in the previous section, the (proper) dyadic expansion of a real
w € [0, 1),

®= ZXn(w) 27", Xu(w) €{0,1}
n=1

yields a sequence (X,),en of independent random variables of Bernoulli distribu-
tion of parameter 1/2. Let ¢ be any fixed one-to-one mapping from N x N into N
and set ¥; ; = Xy j) forevery i, j € N. The random variables Y; ;, i, j € N, are
(obviously) independent. By setting, for every i € N,

© .
U; = Z Y j 27J
Jj=l1
we get a sequence Up, Ua, ... of independent random variables uniformly dis-

tributed over [0, 1].
The reason why Uy, Us, ... are independent is the fact that the o-fields G; :=
o(Y;j : j € N) fori € N, are independent, by an extension of the grouping
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by blocks principle, which is easily proved using Proposition 9.7. To see that U;
is uniformly distributed on [0, 1], note that Ul.(p ) = 1}7:1 Yi; 2~/ has the same
law as XP) := Zfl’:l X, 27", for every integer p > 1. Then, if ¢ is an arbitrary
bounded continuous function on R, passing to the limit p — oo in the equality
E[w(U}”)] = E[p(X)] shows that E[p(U;)] = E[¢(X)] where X (0) = o is
uniformly distributed on [0, 1].

If we now consider a probability measure u on R, and G, (x) = u((—o00, x]), for
every x € R, then Proposition 8.7 shows that the random variables Z; = G;l(U,-)
form a sequence of independent identically distributed random variables with law .

9.5 Sums of Independent Random Variables

Sums of independent random variables play an important role in probability theory
and will be studied in the next chapter. We gather several useful properties of these
sums in the next proposition.

We first need to introduce the convolution of probability measures on RY. If
and v are two probability measures on R?, the convolution 1 # v is the pushforward
of the product measure 1 ® v on R? x R¢ under the mapping (x, y) — x + y: for
any nonnegative measurable function ¢ on R?,

/ w(z)u*v(dz)zf / @(x +y) p(dx)v(dy).
R4 d JRd

In the special case, where © has density f and v has density g (with respect
to Lebesgue measure), then w % v has density f * g (which makes sense by
Proposition 5.5). This is easily checked by writing

[ [ot+9 regmaty = [o@( [ reogt - vz,

where we used the Fubini theorem and a simple change of variable.

If 1« and v are probability measures on R¢, the Fourier transform of 1 % v is the
product 12V of the Fourier transforms of w and v. This is an immediate application
of the Fubini theorem, since for every & € R4,

LEV(E) = / ¢ ok v(dz) = / / ¢SO dxyv(dy) = ZEDE).
R4 R4 JR4
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Proposition 9.12 Let X and Y be two independent random variables with values
inRY.

(i) Thelaw of X + Y is Px x Py. In particular, if X has a density px and Y has a
density py, then X + Y has density px * py.
(i) The characteristic function of X +Y is @xyy(§) = @x (&) Py (&).
(iti) IfE[|X|*] < oo and E[|Y|*] < oo, and Kx denotes the covariance matrix of
X, we have Kx1+y = Kx + Ky. In particular, ifd = 1 and X and Y are in L?
var(X + Y) = var(X) + var(Y).

Proof

(i) We know that Py yy = Px ® Py, and thus, for every nonnegative measurable
function ¢ on R?,

Elp(X + )] = f / o(x + y) Py (dr)By (dy) = / 0(2) Py # Py (dz2)

by the definition of Py * Py. The case with density follows from the remarks
before the proposition.
(i) This follows from the equality Pxyy = Px x Py and the last observation before
the proposition.
i) f X = (Xy,...,Xg) and Y = (Y1,...,Yy), Corollary 9.5 implies that
cov(X;,Y;) =0foreveryi, j € {1,...,d}. Consequently, using bilinearity,
cov(X; +Y;, Xj +Y;) =cov(X;, X;) +cov(Y;, Y;)

which gives Kx4y = Kx + Ky.

O

Theorem 9.13 (Weak Law of Large Numbers) Let (X,),cN be a sequence of
independent and identically distributed real random variables in L. Then,

1 L?
X144+ X — E[Xq].
n n—o00
Proof By linearity,
1
E[ G+ + X)] = ELXL

Furthermore, Proposition 9.12(iii) shows that var(X; + --- + X,) = nvar(Xy).
Consequently,

1 2 1 1
E[(, X1+ X)) —EX]) | = var(Xs ++- 4 X,) = var(X)
n n2 n

which tends to 0 as n — o0. m|
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Remark The proof shows that the result holds under much weaker hypotheses.
Instead of requiring that the X,,’s have the same law, it is enough to assume that
E[X,] = E[X] for every n and that the sequence (IE[X,%]),,EN is bounded. We can
replace the independence assumption by the property cov(X,, X,;) = 0 for every
n # m, which is also much weaker.

The word “weak” in the weak law of large numbers refers to the fact that the
convergence holds in L2, whereas from the point of view of probability theory,
it is more meaningful to have an almost sure convergence, that is, a pointwise
convergence outside a set of probability zero (we then speak of a “strong” law).
We give a first version of the strong law, which will be significantly improved in the
next chapter.

Proposition 9.14 Let (X,)nen be a sequence of independent and identically
distributed real random variables, and assume that E[(X 1)4] < 00. Then, we have
almost surely

1
X1+ + Xn) — E[X1].
n n—00

Proof Up to replacing X, by X, — E[X,,], we may assume that E[X,,] = 0. Then,
by expanding the fourth power of X; + - - - 4+ X,,, we have

1 1
EI( (Xi+-+X)= o )0 BIX X X Xi).

Using independence and the property E[Xi] = 0, we see that the only nonzero
terms in the sum in the right-hand side are those for which any value taken by a
component of the 4-tuple (i1, i2, i3, i4) appears at least twice in this 4-tuple. Since
the Xy ’s have the same distribution, we get

1 1 C
EI(, (X 4+ X)) =, (nEIX{]+ 30— DEIX]X3)) <

with some constant C < oo (C =3 IE[X‘l‘] works). It follows that

e¢]

1
DBIC (X1 4+ + Xa)'] < oo,

n=1

By interchanging sum and expected value, we obtain

E[i(i(xl o X)) < oc,
n=1
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and therefore

21
DO Xtk Xt <00, as,
n=1

which implies that ,ll(Xl + ---+ X,) converges a.s. to O. O

Corollary 9.15 If (Ay)neN is a sequence of independent events with the same
probability, we have almost surely

1 n
Z 14, — P(A)).
n n—o00

i=1
Proof Just apply Proposition 9.14 to X,, = 14,. O

This corollary provides a link between our modern axiomatic presentation of
probability theory and the “frequentist” definition of the probability of an event as
the asymptotic frequency of its occurence when the same random experiment is
repeated a large number of times. See the discussion at the beginning of Chapter 8.

Let us come back to the second application of the Borel-Cantelli lemma given in
Section 9.3, which was concerned with the dyadic expansion

0=y Xi(w)27*

k=1

of areal w € [0,1). If p > 1 we saw that the random variables Y} =
(X1,...,Xp), Y2 = (Xpy1,...,X2p), ... are independent and identically dis-
tributed (recall that the underlying probability is Lebesgue measure on [0, 1)). It
then follows from Corollary 9.15 that, for every choice of iy, ...,i, € {0, 1}, we
have a.s.

1 : , : 1
ncard{J fn.Yj(a))z(zl,...,z,,)}njgo o

For every £ € {1,..., p}, the same argument applied to the random variables
(Xe, Xey1, -0 Xewp-1), Xowp, Xowpt1s - oo Xepop—1), - .. gives, ass,,

1

1 : : .
" card{j <n: Xpyjp(w) =i1, ..., Xer(j+1p-1(w) =ip} njo)o e

By combining these results, we have a.s.

1 1
card{k <n: Xpp1(w) =i1, ..., Xjyp(w) =ip} — . 9.4)
n n—o0 2P
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Since a countable union of sets of zero probability has probability zero, we conclude
that the following holds: for every w € [0, 1), except on a set of Lebesgue measure
0, the property (9.4) holds simultaneously for every p > 1 and every choice of
i1, ...,ip €{0,1}.

In other words, for almost every real @ € [0, 1), the asymptotic frequency of
occurence of any finite block of 0 and 1 in the dyadic expansion of w exists and is
equal to 277, where p is the length of the block. Note that it is not easy to exhibit
just one real € [0, 1) for which the latter property holds. In fact the fastest way to
prove that such reals do exist is certainly the probabilistic argument we have given.
This is typical of applications of probability theory to existence problems: to get the
existence of an object having certain properties, one shows that an object chosen
at random (according to an appropriate probability distribution) will almost surely
satisfy the desired properties.

9.6 Convolution Semigroups

In this section, we briefly discuss convolution semigroups. Roughly speaking, this
notion gives rise to certain collections of probability distributions, such that the
convolution of any two elements of the collection belongs to the same collection.
We consider an indexing set / whichcanbe I = Zy or I = R;..

Definition 9.16 Let (u/);c; be a collection of probability measures on R (or on
]Rd). We say that (u¢);er is a convolution semigroup if ;o = §p and

Ml*:u“t’::u’l+l‘/’ VI,I/EI

The probabilistic interpretation is as follows. If X and Y are two independent
random variables, and if the law of X is u;, and the law of Y is u, then the law of
X 4 Y is sy (cf. Proposition 9.12 (i)).

Lemma 9.17 In order for (1;)ier to be a convolution semigroup, it is enough that
there exists a function ¢ : R —> C such that, for every & € R,

s Ul =2y, 1) =) YVt el;
* ifI =R 1,(8) = exp(—tp(§)), V¥t € L.

The proof is immediate, since, if 71; has the form given in the lemma,
% [ = Jh [y = gy

and the injectivity of the Fourier transform on probability measures (Theorem 8.16)
ZIVES Uyqpr = s * [y

In the case of probability measures on R, respectively on N, one can give an
analogous criterion in terms of Laplace transforms, resp. of generating functions. If
(11)rer, 1s a collection of probability measures on R, the existence of a function
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¢ : Ry — (0, 0o) such that, for every t > 0 and A > 0,
/ e i (dx) = p(1)'
Ry

implies that (u;);cRr, is a convolution semigroup (use Theorem 8.19).
Examples

(1) I = Z4 and, for every n € N, u, is the binomial B(n, p) distribution, where
p € [0,1] is fixed. The property pn+m = Wn * Wy is immediate from the
interpretation of the binomial distribution given in Section 8.1.5. Alternatively,
we can use Lemma 9.17 after checking that 1, (§) = (pe'€ +1— p)™.

(2) I = Ry and, for every t € Ry, u, is the Poisson distribution of parameter ¢.
We can use Lemma 9.17 after verifying that

Ok

@) = e e = exp(—1(1 - ).

k=0

(3) I = R4 and, for every t > 0, u; is the Gamma [I'(¢, ) distribution where
0 > 01is a fixed parameter. Here it is easier to use Laplace transforms. From the
form of the density of the I"(¢, ) distribution, one computes

fe*“ a(dx) = (Q_QM)I.

(4) I = Ry and, for every t > 0, u, is the Gaussian N (0, r) distribution. Indeed,
by Lemma 8.15, we have

- 182
(€)= exp(=) ).

Important Consequences Let X and X’ be two independent real random variables.
We can rephrase examples (2), (3), (4) as follows.

 If X is Poisson with parameter A and X’ is Poisson with parameter A/, then X + X’
is Poisson with parameter A + A’.

» If X follows the I' (a, 6) law and X’ follows the I'(a’, 0) law, then X + X’ follows
the I'(a + d’, 0) law.

o If X is Gaussian N(m,o?) and X’ is Gaussian N'(m’, 6’?), then X + X' is
Gaussian N'(m + m’, o> + o'?). (Considering X — m and X' — m’ shows that
it is enough to deal with the case m = m’ = 0.) Since mutiplying a Gaussian
variable by a constant again gives a Gaussian variable, we also see that any linear
combination of independent Gaussian variables is Gaussian.
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9.7 The Poisson Process

In this section, we introduce and study the Poisson process, which is one of the most
important random processes in probability theory (together with Brownian motion,
which will be studied in Chapter 14). The study of the Poisson process will illustrate
many of the preceding results about independence.

Throughout this section, we fix a parameter A > 0. Let Uj, U, ... be a
sequence of independent and identically distributed random variables following
the exponential distribution with parameter A, which has density 1 e~** on R
(Section 9.4 tells us that we can construct such a sequence !). We then set, for every
neN,

Th=U+Uy+:-+ Uy,

and, for every real r > 0,

o
Ny =) lg,<)=supfn eN: T, <1}

n=1

with the usual convention sup @ = 0. Note that 7, — oo a.s.asn — oo (as a
consequence of Proposition 9.14). Thus, by disgarding the set of zero probability
where the sequence (7},) is bounded, we can assume that N; < oo for every t > 0
and w € £2. Similarly, since the random variables U; are positive a.s., we can also
assume that 0 < 71 (w) < Th(w) < --- forevery w € £2.

For every fixed w, the functiont — N;(w) vanishes at 0, is increasing and right-
continuous, and increases only by jumps of size 1 (see Fig.9.1). Such a function is
called a counting function. We also note that N; —> oo as ¢t — oo.

Definition 9.18 The collection (N;);>¢ is called the Poisson process of parame-
ter A.

The Poisson process is very often used in applied probability models, for instance
in queueing theory, where N; represents the number of customers arriving at a
server before time ¢. The fact that the exponential distribution is chosen to model
the period between two successive arrivals of customers is related to the property
of lack of memory of this distribution (see Section 8.1.5). Roughly speaking, this
property says that, for any given time ¢+ > 0, the time between ¢ and the next
arrival of a customer has always the same distribution independently of what has
happened before time ¢ (we will formulate this in more precise mathematical terms
in Theorem 9.21 below).

Proposition 9.19 For every integer n > 1, T, follows the Gamma I (n, )\)
distribution, with density

n
p(x) = e 1, (x).

(n—1)!
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N —
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1} S
Ty fz 7‘13 i f’; fﬁ t

Fig. 9.1 Representation of the Poisson process. The quantities 71,7, — Ty, 73 — Tp, ... are
independent exponential random variables with parameter A

For every t > 0, N; follows the Poisson distribution with parameter At :

(0¥ oM

PNi=k)y =" | ,

Vk € N.

Proof For the first assertion, we note that the exponential distribution with param-
eter A is just the the I'(1, 1) distribution, and we use the results about sums of
independent random variables following Gamma distributions that are stated at the
end of the preceding section.

To get the second assertion, we first write P(N; = 0) = P(T1 > ) = e and
then, for every k > 1,
P(N; = k) =P(T <t < Tg41)
=PIk =t) = P(Tk1 =1)
t )\'k t )\k-‘rl
= / e dx — / xF e dx
o (k—1)! o k!
Ak
-
k!
where the last equality follows from an integration by parts. O

We will now state a first important result about the Poisson process. We need
to introduce the notion of conditional probability given an event (much more about
conditioning will be found in Chapter 11). If B € Ais such that P(B) > 0, we define
a new probability measure on (§2, .A), which is called the conditional probability
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knowing B and denoted by P(- | B), by setting, for every A € A,

P(AN B)
P(A|B) = P)

For every nonnegative random variable X, the expected value of X under P(- | B)
is denoted by E[X | B], and it is straightforward to verify that

E[X 1
E[X | B] = ][P(B)B]

Proposition 9.20 Lett > 0 and n € N. Under the conditional probability P(- |
N; = n), the random vector (T1, Ta, . . ., T,) has density

n!
tn

1{O<s1 <§p<-<Sp <t}

Moreover, under the conditional probability P(- | N; = n), the random variable
T.+1 — t is exponentially distributed with parameter ) and is independent of
(Tla R Tn)

Interpretation One easily verifies that the law of (71, T, ..., T,) is the distri-
bution of the increasing reordering of n independent random variables uniformly
distributed over [0, ¢] (if Vq, V>, .. Vn are n real random vanables thelr 1ncreas1ng
reordering is the random vector (Vl, Vz, .. V,,) such that V1 < Vz < ... < V,,
and, for every w, values taken by Vl (w), Vz(a)) V,, (w), counted with their
multiplicities, are the same as the values taken by Vl (a)), Va(w), ..., V,(w)—see
Exercise 8.14). We can thus reformulate the first part of the proposition by saying
that, if we fix the number n of jumps of the Poisson process on the time interval
[0, ¢], the set of the corresponding jump times is distributed as the values of n
independent random variables uniformly distributed over [0, ¢].

Proof The density of the vector (Uy, Ua, ..., U,41) is the function

n+l1

X1y vvy Xnt1) > pan exp ( — Zx,) an++1(xl, ey Xnt1)-
i=1

If ¢ is a nonnegative measurable function on R'jr“ , we can then compute
Elo(Th, T2, . .., Tnt1) Liny=n)]

= E[QO(TL T21 ey Tn+1) I{T;ZST<TV,+1}]
=ElpU, U1+ Uz, ..., U+ + Upy 1) Y 4t Uy <t <Uy 4 4-Upir}]
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:/Rnﬂfp(xpm~|—x2,...,x1+...+xn+l)

+
n+l1

1
X l{xl+‘“+anT<xl+"'+xn+1} )\,n+ exXp ( — Zx,-) dx1 e d.anrl
i=1

— )l /RHI 1{0<y1<~~~<yn§t<yn+1} exXp(—AYn+1)@V1s -y Yn+1)dy1 .. . dyng1

T
using the change of variables (x1,...,x,) — (x1,x1 +x2,...,x1 +--+ Xx,) in
the last equality. Since P(N; = n) = (}‘nt!)n e ™, we get
Elo(T, Tz, ..., Thy1) | Nt = n] 9.5)
=P(N; = n)*1 Elo(Ti, T2, . .., Tut1) 1in,=n}]
n! _ _
= L0y, <cyut<ynr) A€ X 0y, v )dyr - dyng
" ]R”j'
In particular, if o(T1,T2,...,Th+1) = ¥(T1,T»,...,T,) only depends on
Ty, ..., T,, we have

]E[w(Tls T21 ey Tn) | NI :n]

n! [ee]

= n/ W(yh--.,yn)(/ Ae”y"“’)dyn+1)dy1-.-dyn
1" Ji0<yi <y <-<yn=t) :
n!

= n/ I/I(yla'--ayn)dyl...dyn,
" Jo<yy<-<yu=t}

giving the first assertion of the proposition.

To get the second assertion, we use (9.5) again, with the change of variable z =
Yn+1 — t and the Fubini theorem, to get for any nonnegative measurable functions
Y and 6 defined on (R4)" and on R respectively,

Ely (T, T2, ..., T)) 0(Thy1 — 1) | Ny =n]

n!

o0
= /R1{0<y1<~~~<ynsz}W(y1,yz,...,yn)(/ )ue“G(z)dz)dyL-.dyn
n 0

tn
"
o
=E[y(T1, D>, ..., T,) | Ny = n] x / re 2 0(2) dz,
0

In particular, under P(- | N; = n), T,41 — t is exponentially distributed with
parameter A (take y = 1), and the desired independence property also follows from
the last display. O
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Remark The second part of the proposition also holds for n = 0: the fact that the
law of 71 — ¢ under P(- | N; = 0) is the exponential distribution with parameter A
is exactly the lack of memory of the exponential distribution.

We now state another very important theorem about the Poisson process.

Theorem 9.21 Lett > 0. For everyr > 0, set
Nr(t) = Nt+r - Nt-

Then the collection (N,(t))rzo is again a Poisson process with parameter A, and is
independent of (Ny)o<r<t-

Interpretation If we interpret the jump times of the Poisson process as the arrival
times of customers at a server, the preceding theorem means that an observer
arriving at time ¢ > 0 and recording the arrivals of customers after that time will see
(in distribution) the same thing as if he had arrived at time 0, and the knowledge of
arrival times of customers between times 0 and ¢ will give him no information on
what happens after time ¢. This can be viewed as an aspect of the so-called “Markov
property”, which we will discuss in different settings in Chapters 13 and 14.

Proof Let us introduce the random variables
Ul =Tn+1—t
and, forevery i > 2,
Ul = Tn,+i — Tny+i—1 = Un,+i
(we leave it as an exercise to check that the U/’s are indeed random variables). Also
set T, = U] + Uy + --- + U, = Tn,4n — t for every n > 1. By construction, for
every r > 0,
N,(’) =Njr—Ny=card{i > 1:1 <T; <t+r}=card{fn > 1:T, <r}.
To prove that (N,(t))rzo is a Poisson process, it then suffices to verify that U {, Ué, .

are independent and exponentially distributed with parameter A.
To this end, we fix an integer n > 0 and we will first condition on the event

(Ny=n}={Ui++ Uy <n<U++Unh
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which is measurable with respect to o(Uj,...,Uy+1). Let p € N, and let
Ay, ..., A, be Borel subsets of R,.. Then,

P(U{EAl,UéeAQ,...,UI/,EAP|Nt=n)
_ PN, =n} N {Thr1 — 1 € A1} N {Unt2 € A2} N -+ - N {Upyp € Ap))

P(N; = n)
PAN: = n} N {Th41 — 1 € A1})
= P(U, € Ay)---P(U, eA
P(N, = n) ( n+2 2) ( n+p p)
where we used the fact that the event {N; = n} N {T,41 —t € A1} is
o(Uy, ..., Uys1)-measurable, and thus independent of (U, 41+ )keN. From Propo-

sition 9.20 (and the subsequent remark in the case n = 0), we know that the law of
T,+1 — t under P(- | N, = n) is the exponential distribution with parameter A. So,
writing w, for this exponential distribution, we have obtained that

P(Uj € A1, U € A, ..., UI/, €Ay | Ny =n) = up (A ua(Az) - - - ua(Ap).
Finally, we have

P(Uj € A1, U} € Ay, ... U, € Ap)

o0
=ZP(N, =m)PU{ € AUy € Ay, ..., U, € Ay | Ny =n)
n=0

= (A1) ua(A2) -+ a(Ap),

which shows that U{, U,, ... are independent and exponentially distributed with
parameter A under P.
We still have to prove that (N,(t)),zo is independent of (N, )o<,<;. It is clear that

o(ND, r>0Cco(T|,Ty,..)=0Uj,Us,...)

and therefore it is enough to prove that the sequence (Uj, U,, ...) is independent
of (Ny)o<r<;. Let us fix two integers p > 2 and k > 1. Letry,r2,...,rx € [0, 1],
let £1,...,4y € Zy and let Ay, ..., A, be Borel subsets of R . For every integer
n > 0, we have

P({Ny, = £1,.... Ny, = G} N {U] € A1,... .Uy € Ap} | Ny = n)

1

= b= m) ><IP>({Nr1 e Ny = O No =) O {Tpst — 1 € Ay

N{Unt2 € A2} N N {Up4p € Ap})
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1

= v = P({er =01, Ny o=l Ny =0} O Ty — 1 € A1})

X P(Upy2 € A2) x - x P(Up1p € Ap)
where the last equality holds because the event
(N =81,....,Ny =, Ny =n} N {Tq41 —t € Ay}

is o(Uy,..., Uy41)-measurable (this event is empty if one of the numbers
Ly,..., ¢ is greater than n) and therefore independent of (U2, ..., Unyp).
We have P(Up42 € A2) X -+ - X P(Up4p € Ap) = ua(A2) - - - ua(Ap), and then

ORI ]P’({N,l =00, Ny o=l Ny =0} O (Tppy — 1 € Al})

=P{Ny =41,..., Ny =&} N {Tyy1 —t € A1} | Ny =n)
=P(Ny =41, ..., Ny =L | Ny =n) ua(Ar),

using the second part of Proposition 9.20 together with the fact that, on the event
{N; = n}, Ny, ..., N, can be written as functions of 71, ..., T,. Finally, we have
proved that

P({N,, = €1, ..., Ny = U} N{U] eAl,...,U[’7 € Ap} | Ny =n)
=P(WNy =L1, ..., Ny = i | Nt = n) i (A (A2) .. o (Ap).
If we multiply both sides by P(N; = n) and then sum over n, we get
PN, =€1,...,N,k=€k}ﬂ{U{eA1,...,U[’,eA,,})

=P(N,, =41,..., Ny =€) ua(ADpua(A2) ... ua(Ap)
=P(Ny, = L1,.... Ny, = ) P(U] € Ar,...,U) € Ap).

Hence, (U], ..., UI’,) is independent of (N,,,..., Ny). Recalling the end of
Section 9.2, this suffices to get that the sequence (U7, Ué, ...) is independent of
(Ny)o<r<t, which was the desired result. O

Corollary 9.22 Letty = 0 < ti < --- < tr. The random variables N;,, N;, —
Ny, ..., Ny — Ny, are independent, and, for every j € {1,...,k}, N,j — th;l
follows the Poisson distribution with parameter A(tj —t;_1).

Proof By applying Proposition 9.19 and Theorem 9.21, we get that, for every j €

ri— . . . .
{1,...,k}, th — N,,.fl = N,(_’_,l_il is a Poisson random variable with parameter

A(tj — tj—1) and is independent of (N, Ny, — Ny, ..., ij—l — thfz). This last
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property easily implies the independence of the variables Ny, Ny, — Ny, ..., Ny —
Ny, ]

For any choice of 0 < #; < ... < g, Corollary 9.22 describes the law
of the vector (N, Nty — Ny, ..., Ny — Ny_;) and therefore also (via a linear
transformation) the law of (N;, Ny, ..., Ny ). We say that we have described the
finite-dimensional marginal distributions of the Poisson process.

9.8 Exercises

Exercise 9.1

(1) Let X and Y be two independent real random variables with the same law.
Compute P(X = Y) in terms of the common law p of X and Y. Show that
P(X >Y)=P(Y > X) > 0, except in a particular case to be discussed.

(2) Let (Xn)nen be a sequence of independent and identically distributed random
variables with values in R.. Show that ) °, iy X,, = 00 a.s., except in the special
case where X, = 0 a.s. for every n.

(3) Under the assumptions of the previous question, show that there is a constant
£ € [0, oo] such that max{Xy,..., X,} — £ as n — oo, almost surely, and
determine £ in terms of the distribution function of X;.

Exercise 9.2 Let U and V be two independent real random variables distributed
according to the exponential distribution with parameter A > 0. Show that the
variables UZV and U + V are independent and determine their law.

Exercise 9.3 Let N and N’ be two independent Gaussian A'(0, 1) random vari-
ables. Show that the random variable N?/(N? + N'?) has density

1 1
T Jt(l—1)

This is the so-called arcsine distribution.

1o,H(®).

Exercise 9.4 Let (X,),cN be a sequence of independent and identically distributed
random variables uniformly distributed over {1,2,..., p}. For every n € N,
determine the law of M, = max{Xy,..., X}, and show that E[M,]/p —
n/(n+ 1) when p — oo.

Exercise 9.5 Let Ag, A1, Az, ... be a sequence of independent events. For every
w € £2, set

T(w)=inf{n >0:w € A,},
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with the convention inf @ = oo. Verify that T is a random variable and give its
distribution in terms of the numbers p, = P(A,). What condition on the p,’s
ensures that 7 < oo a.s. ? In the case where p, = p € (0, 1) for every n, identify
the distribution of T and compute E[7'] and var(T').

Exercise 9.6 A real random variable X is called symmetric if X and —X have the
same law.

(1) Let X be a symmetric random variable, whose law has a density f. Show that
f can be chosen such that f(x) = f(—x) forevery x € R.

(2) Show that a real random variable X is symmetric if and only if its characteristic
function takes values in R.

(3) Let Y and Y’ be two independent real random variables with the same
distribution. Show that ¥ — Y’ is symmetric. Does this still hold without the
independence assumption ?

(4) Let ¢ be a random variable with values in {—1, 1} such that P(¢ = 1) =
P(e = —1) = 1/2. Show that, if X is a symmetric random variable and X
is independent of ¢, then ¢| X| has the same distribution as X.

Exercise 9.7 Let (X,),cN be a sequence of independent and identically distributed
random variables with values in R. Show that, if E[X] < oo,

. Xn
lim sup =0, as,
n—oo N

whereas, if E[X{] = oo,

. Xy
lim sup =00, a.s.
n—oo N

Exercise 9.8 Let « > 0 and let (Z,),en be a sequence of independent random
variables with values in {0, 1}, such that, for everyn € N,

1

ne’

1
P(Z,=1)= and P(Z,=0)=1-—
n(l
Verify that Z,, — 0 asn — oo in L!, but nonetheless we have a.s.

limsup Z, =
n—oo

lifa <1,
Oifa > 1

Exercise 9.9 Let (X,),en be a sequence of real random variables. Assume that
there exists a constant C such that ]E[(Xn)z] < C for every n € N, and that
cov(X,, Xn) =0ifn #£ m.
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(1) Verity that

—E
Sn2 [5,2] — 0, as.

n2 n—00
(2) Deduce from question (1) that we have also

Sp — E[Sx]
— 0, a.s.

n n—00

Exercise 9.10 Let (X,),cN be a sequence of independent random variables dis-
tributed according to the exponential distribution with parameter 1.

(1) Prove that

lim sup (logn)*an =1, as.

n—0oQo

(2) Let Z, = max{Xy, ..., X,}. Verify that
liminf(logn)_lzn >1, a.s.
n—oo

(3) Verity that, for an appropriate sequence ny 1 0o, one has

lim sup (lognk)_lznk <1, a.s.
k—o00

Then show that lim,,_, », (log n)_lzn =1, a.s.

Exercise 9.11

(1) Let N and N’ be two independent Gaussian A (0, 1) random variables. Show
that X = N /N’ follows a Cauchy distribution with density (7 (1 + x2))~1.

(2) Compute the characteristic function of X. (Hint: Verify that E[¢!6X] =
2m) V2 [ exp(— % (y— |§| )> — |€])dy and then use the result of Exercise 7.5.)

(3) Let Xy, ..., X, be n independent random variables with the same distribution
as X. Show that rll(X 1+ --- 4+ X,) also has the same distribution as X. Why
does this not contradict the weak law of large numbers ?

(4) Let (Y;)nen be a sequence of independent and identically distributed real
random variables with a symmetric distribution (Y, has the same law as —Y},).
Assume that rll (Y1 + - - -+ Y,) has the same distribution as Y7, for everyn € N.
Show that Y, follows a Cauchy distribution.

Exercise 9.12

(1) Leta,b € Rwitha < 0 < b. If Y is a random variable with values in [a, b],
verify that var(Y) < (b — a)?/4.
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(2) Let Z be a centered random variable with values in [a, b], and, for every A > 0,
set ¥z(A) = logE[¢*?]. Prove that, for every A > 0,

2
vy <@ _8“) 22

(Hint: Verify that the second derivative wg (A) makes sense and is equal to the

variance of Z under a probability measure absolutely continuous with respect
to IP).

(3) Let Xy, ..., X, be independent real random variables such that, for every i €
{1,...,n}, X; takes values in [a;, b;], where a; < 0 < b;. Prove that, for every
e >0,

n n 2
P ZX,-—IE ZX,- >¢ §exp<— n 2e )
(i=1 [i=1 ] ) Z(b" — )
i=1

This is known as Hoeffding’s inequality.

Exercise 9.13 Let Uy, ..., U, be independent random variables with values in
{=1,1} such that P(U; = 1) = P(U; = —1) = 1/2 forevery j € {1,...,n}.
Letay,...,a, € R. Prove that

n
> a;U
j=1

E| >

1 n
2
}2 3/.2_1“/‘

This is a particular case of the Khintchine inequality (the constant 1/3 can be
replaced by 1/2, but this requires more work). Hint: Verify that, if X is a real random
variable in L4,

E[X2]3/2
R E



Chapter 10 )
Convergence of Random Variables Shethie

The first section of this chapter presents the different notions of convergence of
random variables, and the relations between them. In particular, we introduce and
discuss the convergence in probability of a sequence of random variables. For
simplicity, we restrict our attention to random variables with values in R¢, although
many of the concepts and results that follow can be extended to random variables
with values in more general metric spaces. We then prove the strong law of large
numbers, which is one of the fundamental limit theorems of probability theory. A
useful ingredient is Kolmogorov’s zero-one law, which roughly speaking says that
an event depending only on the asymptotic behavior of an independent sequence
must have probability zero or one. The third section discusses the convergence in
distribution of random variables. This convergence is more delicate to grasp, partly
because it is a convergence of the laws of the random variables in consideration,
and not of the random variables themselves. We provide a detailed proof of Lévy’s
theorem characterizing the convergence in distribution in terms of characteristic
functions. This result yields an easy proof of the central limit theorem, which
is another fundamental limit theorem of probability theory. The last section is
devoted to the multidimensional central limit theorem, whose statement involves
the important notion of a Gaussian vector.

10.1 The Different Notions of Convergence

Throughout this chapter, we argue on a probability space (§2, A, P). Let (X;),eN
and X be random variables with values in R?. We have already encountered several
notions of convergence of the sequence (X, ),eN towards X. In particular, the almost
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sure convergence is defined by saying that
X, 25 X if Ploe 2: X(@) = lim X,(@)}) = 1.
n—00 n—o0

Let p € [1, 00), and assume that E[| X|”] < oo and E[| X,|”] < oo foreveryn € N.
We can define the convergence of X, to X in L? by

X, 25 X if lim E[|X, — X|”] = 0.
n—oo

n—oo

This is equivalent to saying that each component sequence of (X,),eN converges
to the corresponding component of X in the Banach space L” (2, A, P). One could
also consider the convergence in L°°, but this convergence is very rarely used in
probability theory and we will not discuss it.

Definition 10.1 We say that the sequence (X,),en converges in probability to X,
and we write

P
x, & x

n—oo

if, for every ¢ > 0,

lim P(|X, — X| > &) = 0.
n—0o0

Proposition 10.2 Let E%d (82, A, IP) be the space of all random variables with
values in RY, and let L%fl (82, A, P) be the quotient space ofE?Rd (82, A, P) for the
equivalence relation defined by saying that X ~ Y ifand only if P(X = Y) = 1.
Then the formula

dX,Y)=E[IX — Y| A 1]

defines a distance on L%d (2, A, P), and this distance is compatible with the conver-
gence in probability, meaning that a sequence (Xp),eN converges in probability to
X if and only if d(X,,, X) tends to 0 as n — o0o. Moreover, the space L%d (2, A,P)
is complete for the distance d.

Proof 1t is very easy to verify that d is a distance on L%d (82, A, P) (in particular,
d(X,Y) = 0 implies | X — Y| A 1 = 0 a.s. and thus P(X = Y) = 1). Then, if the
sequence (X,),eN converges in probability to X, we have for every ¢ > 0,
E[|Xn — X[ A 1] = E[1 Xy — X[1x,—x|<e}] + E[(1 X0 — X| A D1jjx,—x|>¢)]
<e+P(X, — X]| > ¢).
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From the definition of the convergence in probability, this implies that
limsupd(X,, X) < ¢, and since ¢ was arbitrary, we have proved thatd(X,,, X) —
0. Conversely, if d(X,, X) —> 0, the Markov inequality gives, for every ¢ € (0, 1),

P(1X, — X| > &) < e 'E[| X, — X| A 1] = e 'd(X,,, X) —> 0.
n—0o0

It remains to prove that L?Rd (£2, A, P) is complete for the distance d. So let
(Xn)nen be a Cauchy sequence for the distance d. We can then find a subsequence
Y = Xy, k € N, such that for every k > 1,

d(Yx, Yip1) <27%.

Then,

o o
E[ D (¥ = Yel A D] = D d¥e, Yern) < o0,
k=1 k=1

which implies that Z,fozl(lYkH — Y| A1) < oo as., and therefore also
Y teq |Yk41 — Yk| < oo as. (there are a.s. only finitely many values of k such
that |Yi+1 — Yx| > 1). We then define a random variable in L%d (£2, A, P) by setting

oo
X=Y1+) (Yer1 = Yo,
k=1

on the event where the series converges absolutely, and X = 0 on the comple-
mentary event, which has zero probability. By construction, the sequence (Yi)xeN
converges a.s. to X, and this implies

d(Yx, X) = E[|Yx — X[ A 1] — O,
k— 00

by an application of the dominated convergence theorem. Hence the sequence
(Yi)ken converges to X for the distance d, and since the sequence (X,)neN 1S
Cauchy and has a convergent subsequence, it must also converge. O

A by-product of the preceding proof is the fact that any sequence that converges
in probability has a subsequence that converges a.s. (compare with Proposition 4.6).
We state this in the following proposition.

Proposition 10.3 [f the sequence (X,)neN converges to X a.s., or in LP for some
p € [1, 00, then it also converges to X in probability. Conversely, if the sequence
(Xn)nen converges to X in probability, there is a subsequence (X, )ken that
converges a.s. to X.
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Proof 1f X,, converge a.s. to X, then,

d(X,», X) =E[|X, — X|A1] — O,
n—o00

by dominated convergence. If X, converges to X in L?, then

d(Xp, X) = E[| Xy — X[ = [I1Xn = XIll1 < [1Xn = Xl —> 0.
The last assertion has been derived in the proof of Proposition 10.2. O

Remark The second part of the proposition has the following interesting conse-
quence. In the dominated convergence theorem applied to a sequence of random
variables (X, ),eN, the assumption of almost sure convergence of the sequence can
be replaced by convergence in probability. To see this, observe that the sequence
(X,,) converges to X in L' if and only if, from any subsequence of (X,), one can
extract another subsequence that converges to X in L', and then note that the second
part of Proposition 10.3 ensures that the latter property holds.

To summarize, the convergence in probability is weaker than both the almost
sure convergence and the convergence in L” for any p € [1, oc]. In the reverse
direction, the convergence in probability implies the almost sure convergence along
a subsequence, and the next proposition gives conditions that make it possible to
derive the convergence in L” from the convergence in probability.

Proposition 10.4 Suppose that the sequence (X,)nen converges to X in proba-
bility, and that there exists r € (1,00) such that the sequence (E[|X,|" )neN is
bounded. Then E[|X|"] < oo, and, for every p € [1,r), the sequence (X;)neN
convergesto X in LP.

Proof By assumption, there is a constant C such that E[|X,|"] < C for every n.
By Proposition 10.3 we can find a subsequence (X, ) that converges a.s. to X. By
Fatou’s lemma, we have

E[|X|'] = E[liminﬂXnkl’] < liminfE[|X,,|'] < C.
k— 00 k—o00

Then, using the Holder inequality, we have, for every p € [1, r) and every ¢ > 0,
E[1Xy — XI”] = E[|1 X — XI"1x,—x|<e}] + El[1Xn — X|P1jix, - x|>¢}]
< e’ +E[1 X, — XI"1P/"P(X, — X| > &) 7P
<e? +2CYYPP(X, — X| > &) 7P/".
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Using the fact that X, converges in probability to X, we get

limsupE[| X, — X|P] < &”

n—o0

which gives the desired result since ¢ was arbitrary. O

The next proposition known as Scheffé’s lemma gives a useful criterion allowing
one to deduce L'-convergence from almost sure convergence in the case of
nonnegative real random variables.

Proposition 10.5 Ler (X,),eN be a sequence of nonnegative random variables in
L'. Assume that X, converges in probability to X as n — 0o, and X € L'. Then
the condition E[X,,] — E[X] as n — oo implies that X, converges to X in L.

Proof We write
E[|1X, — X1 = E[X, — X]+ 2E[(X, — X)"].

We have E[X,, — X] —> 0, and on the other hand, the bound (X,, — X)™ < X
allows us to apply the dominated convergence theorem in order to get that E[(X,, —
X)7] —> 0 (we use the fact that the assumption of almost sure convergence in the
dominated convergence theorem can be replaced by convergence in probability, see
the remark following the proof of Proposition 10.3). O

Figure 10.1 illustrates the relations between the different types of convergence
that we have introduced. The dashed lines give partial converses (under the stated
conditions) that correspond to results stated in Propositions 10.3 and 10.4, and to
the dominated convergence theorem.

As a final remark, the condition required to apply the dominated convergence
theorem (| X,| < Z with E[Z] < o0) is not the best one in order to deduce L!-
convergence from convergence in probability. In fact, this condition can be replaced
by the (weaker) property of uniform integrability of the sequence (X},),cN, which
will be discussed in Section 12.5 below (see in particular Theorem 12.27).

L’] L]) Ll if ‘X”| <7
Xn — )(( >:>>)1(;n E— Xv~~:~>‘ Xn, = X ‘\\\with ]E[Z] o
qzp= el \
fElx <D x, B x
with r > p ﬂ '

/
- along a
a.s. --"subs .
a-” subsequence
X, — X

Fig. 10.1 Relations between the different convergences
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10.2 The Strong Law of Large Numbers

We start with an important preliminary result.

Theorem 10.6 (Kolmogorov’s Zero-One Law) Let (X,),cN be a sequence of
independent random variables taking values in arbitrary measurable spaces. For
everyn € N, let B, be the o-field

B, =0(Xy; k > n).

Define the asymptotic o -field Boo by

Then P(B) = 0 or 1, for every B € Bu.

Proof Forevery n € N, set
D, =0c(Xyr; k <n).

Proposition 9.10 shows that D, is independent of B, ., hence a fortiori D, is
independent of B,. Consequently,

o0
VAe | JDu. VB €By. P(ANB)=PAP(B).

n=1

Since the class [ 72 | D, is closed under finite intersections, Proposition 9.7 implies
that B, is independent of

U(DDH) —o(X,:n>1).

n=1

In particular, B, is independent of itself, but this means that, for every B € By,
P(B) = P(B N B) = P(B)2, which is only possible if P(B) = O or 1. |

Let us give a simple illustration of Theorem 10.6. In the setting of this theorem,
a random variable Y taking values in [—o00, co] which is B.,-measurable is
necessarily equal to a constant a.s. (this can be verified by observing that the
distribution function x +— P(Y < x) takes values in {0, 1}). Let us then consider a
sequence (X,)neN of independent real random variables. The random variable

1
Z :=limsup (X1+---+X,),
n

n—o0
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which takes values in [—00, 00], is Boo-measurable, since we have also, for every
keN,

. 1
Z=hmsupn(Xk+Xk+1+..._|_Xn)

n—oo

which shows that Z is B;-measurable for every k € N. Theorem 10.6 thus implies
that Z is constant a.s. In particular, if we know that IIZ(X 1+ -+ X») converges
a.s., the limit must be constant.

Before using the zero-one law to establish the strong law of large numbers, we
give an easier application to the so-called coin-tossing process (also called simple
random walk on 7).

Proposition 10.7 Let (Xp)neN be a sequence of independent and identically
distributed random variables with values in {—1, 1}, such that P(X,, = 1) =
P(X,=-1)= é For everyn € N, set

S =X1+Xo0+ -+ X,.
Then we have a.s.

sup S, = +o00 and inf S, = —o0.
neN neN

Consequently, {n € N : S, = 0} is unbounded a.s.

In other words, we may imagine a coin-tossing game where at each step the
player wins or loses one Euro with probability 1/2, and S, then represents the
(positive, negative or zero) gain accumulated after n steps. The proposition shows
that, as n — oo, the gain will alternate between positive and negative values, and
therefore there will be arbitrarily large times at which the gain is 0.

Proof We start by proving that, for every p € N,

P(—p < inf S, <sup S, < p) =0.
neN neN

To this end, fix an integer k > 2 p, and note that
o0
U{Xjk+1 =Xjk2 = = Xjppe = I} C({—p =infS, =sup$, =< pH°-.
=0 n

However, an application of the Borel-Cantelli lemma (see Section 9.3 for a similar
argument) shows that the set in the left-hand side has probability 1, and the desired
result follows.
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If we let p tend to oo, we get

P({inf S, > —oo} N {sup S, < oo}) =0,
neN neN

and therefore,

P({inf S, = —oo} U {sup S, = o0}) = 1.
neN neN

In particular,

P({inf S, = —o0o}) + P({sup S, = o0}) > 1.
neN neN

A symmetry argument shows that

P({inf S, = —oo}) = P({sup S, = oo})
neN neN

and this probability is positive by the preceding display. To complete the proof, we
observe that

{sup S, = 00} € Beo.
neN

Indeed, for every k € N,

{sup S, = 00} = {sup(Xy + Xg41 + -+ X,) = 00} € By

neN n>k
so that the event {sup, S, = oo} is measurable with respect to the intersection
of the o-fields By, which is the o-field By. The zero-one law now shows that
P({sup, S = oo}) = 1. |

We now come to the main result of this section. Notice that a first version of
this result, under stronger integrability assumptions, already appeared as Proposi-
tion 9.14 (see also Exercise 9.9).

Theorem 10.8 (Strong law of large numbers) Ler (X,),>1 be a sequence of
independent and identically distributed real random variables in L. Then,

1 S,
X1+ + X)) =5 BIX).
n n—oo

Remarks

(i) The L' integrability assumption is optimal in the sense that it is needed for
the limit E[X;] to be defined (and finite). If we remove the L! assumption but
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assume instead that the random variables X,, are nonnegative and E[X] = oo,
it is easy to obtain that

1 s
(X1 4+ Xn) =3 400
n n—o00

by applying the theorem to the variables X, A K, for every K € N.

(ii) One can show that the convergence of the theorem also holds in L'. The proof
will be given at the end of Chapter 12 as an application of martingale theory.
As we already mentioned, the almost sure convergence is the most interesting
one from a probabilistic point of view.

Proof To simplify notation, we set S, = X| + --- + X, for every n € N, and
So =0.Leta > E[X], and

M := sup (S, — na),

HEZ+

which is a random variable with values in [0, oo]. We will show that
M < o0, a.s. (10.1)

Assume that (10.1) holds (for any choice of a > E[X1]). Since S, < na + M for
every n € N, it immediately follows from (10.1) that

1
limsup S, <a, a.s.
n—oo N

By considering a sequence of values of a that decreases to E[ X 1], we find

1
limsup S, <E[X1], as.

n—oo N
Replacing X, by —X,,, we get the reverse inequality
o]
liminf S, > E[X], a.s.
n—oo n
and the convergence in the theorem follows.
It remains to prove (10.1). With the notation of Theorem 10.6, we first observe

that {M < oo} belongs to B. Indeed, we have, for every integer k € N,

{M < oo} = {sup (S, —na) < oo} = {sup(S, — Sk — na) < oo}

neZy n>k
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and the event in the right-hand side is By 1-measurable. It will therefore be enough
to prove that P(M < oo0) > 0, or equivalently that P(M = oo) < 1. In the
remaining part of the proof we verify that P(M = co) < 1.

For every k € N, set

My := sup (S, — na),

0<n<k

M; == sup (Sy+1 — S1 — na).

0<n<k

Then, M} and M ,; are nonnegative random variables with the same distribution, as a
consequence of the fact that the random vectors (X1, ..., Xi) and (X2, ..., Xk+1)
have the same law. It follows that

M = lim 1 My
k— 00
and
M’ := lim 1 M,
k— 00
also have the same law (just observe that P(M’ < x) = lim | P(M; < x) =lim |

P(My < x) =P(M < x) for every x € R).
On the other hand, it follows from the definitions that, for every integer k > 0,

My 41 = sup (O, sup (S, — na)) = sup(0, M}, + X1 — a),
I<n<k+1

which can also be written as
My = M]/( —inf(a — X1, M,Q)

Since M; has the same law as M (and both these variables are clearly in LY, we
get

Efinf(a — X1, M})] = E[M}] — E[M41] = E[My] — E[My41] <0
thanks to the trivial inequality My < Mjy4+1. We may now apply the dominated
convergence theorem to the sequence inf(a — X1, M,i), k € N, noting that these

variables are bounded in absolute value by |a — X1| (recall that M, > 0). It follows
that

Elinf(a — X1, M")] = Jim Efinf(a — X, M})] < 0.
— 00
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We now argue by contradiction to prove that P(M = oo) < 1. Suppose that
P(M = o0) = 1, then we have also P(M’ = o0) = 1, since M and M’ have the
same law, and it follows that inf(a — X1, M') = a — X a.s. But then the inequality
in the last display gives E[a — X1] < 0, which is a contradiction since we chose
a > E[X1]. This contradiction completes the proof. |

Remark The preceding proof can be found in Neveu [16]. It is different from the
“classical” proofs that appear in most textbooks on probability theory, which involve
making an appropriate truncation of the random variables X, (typically, the first step
of the argument is to replace X,, by X, 1{x,<s}, in a way similar to Exercise 12.14
below). In Chapter 12, we will present three other proofs of the strong law of large
numbers, which depend more or less on martingale theory. See Section 12.7 and
Exercises 12.9 and 12.14. The proof presented in Exercise 12.9, which uses very
little of martingale theory, is arguably the simplest one.

10.3 Convergence in Distribution

Recall that C, (R?) denote the set of all bounded continuous functions from R into
R. We equip Cj,(R?) with the supremum norm

llell = sup |p(x)].

xeRd

We let M (R9) denote the set of all probability measures on R4, B (Rd)).

Definition 10.9 A sequence (i, )N in M (RY) converges weakly to u € M (RY)
if

Vo € Cp(RY), /cﬂdun —> /wdu-
n—>oo

A sequence (X,),eN of random variables with values in R4 converges in distribu-
tion to a random variable X with values in R? if the sequence (Px,),cN converges
weakly to Py. By Proposition 8.5, this is equivalent to saying that

Vo € Co®Y).  Elp(X)] — Elp(X)].

d
We will write @) u, resp. Xp Q) X, if the sequence (i4),eN converges

weakly to u, resp. if (X,),en converges in distribution to X.
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Remarks

(1) There is some abuse of terminology in saying that the sequence (X;),eN
converges in distribution to X, because the limiting random variable X is not
determined uniquely (only its distribution Py is determined). For this reason, we
will sometimes write that a sequence (X,),en of random variables converges
in distribution to a probability measure ;. — one should of course understand
that the laws Py, converge weakly to ;. We may also note that the convergence
in distribution makes sense even if the random variables X,,, n € N are defined
on different probability spaces (in the present book, we will however always
assume that they are defined on the same probability space). This makes the
convergence in distribution very different from the other types of convergence
studied in this chapter.

(i) The space M (RY) may be seen as a subspace of the topological dual of C, (RY).
The weak convergence on M(R?) then corresponds to the so-called weak*-
topology on the dual.

Examples
(a) Suppose that the random variables (X),en and X take values in Z4. Then X,
converges in distribution to X if and only if

VxeZ¢, PX,=x) — PX=x)
n—>oo

(the “if” part requires a little work, but will be immediate when we have
established that Cj, (R¥) can be replaced by C, (Rd) in the definition of the weak
convergence, see Proposition 10.12 below).

(b) Suppose that, for every n € N, X,, has a density p,(x), and that there exists a
probability density function p(x) on R? such that

pn(x) — p(x), ae.
n—0o0

where a.e. refers to Lebesgue measure on R?. Then X,, converge in distribution
to a random variable X with law Py (dx) = p(x)dx. Indeed, consider a function
¢ € Cp (Rd) such that 0 < ¢ < 1 (clearly, we may restrict our attention to that
case). Then, Fatou’s lemma shows that

limint / 9 () pa()dx > / P () po)da

11}2}){?/(1 — @) pp(x)dx > /(1 — @) p(x)dx.



10.3 Convergence in Distribution 211

By combining these two bounds, and using the fact that p(x) is a probability
density function, we get

Tim_ / () pu(x)dx = f () p(x)dax.

(c) If, for every n € N, X, is uniformly distributed on {rlw 5, R Z}, then X,
converges in distribution to the uniform distribution on [0, 1]. This is just a
special case of the approximation of the integral of a continuous function by
Riemann sums.

(d) If X,, is Gaussian N\ (0, 0,12) and 0,, —> 0, then X,, converges in distribution to

the random variable 0.

Proposition 10.10 If the sequence (Xp),eN converges in probability to X, then it
also converges in distribution to X.

Proof Suppose first that X,, converges a.s. to X. Then, forevery ¢ € Cp(RY), ¢(X,)
converges a.s. to ¢(X) and the dominated convergence theorem gives E[p(X,)] —
Elp(X)].

If X, only converges in probability to X, then we know from Proposition 10.3
that there is a subsequence of (X,,),en that converges a.s. to X, and thus, for every
¢ € Cp(RY), E[p(Xn)] converges to E[¢(X)] along this subsequence. But then, the
same argument shows that, from any subsequence of (X},), <N, we can extract a sub-
subsequence along which E[¢(X,,)] converges to E[¢(X)]. This is only possible if
Elp(Xn)] — Elp(X)] asn — oo. |

Remark The converse to the proposition is (of course) false, because, as we already
mentioned, the convergence in distribution of X, to X does not determine the
limiting variable X. There is however a very special case where the converse holds,
namely the case where the limiting random variable X is constant. Indeed, if X,
converges in distribution to a € R?, property (ii) of the next proposition shows that,
for every ¢ > 0,

liminfPx, (B(a, £)) > 1
n—>oo

where B(a, €) denotes the open ball of radius ¢ centered at a. This is exactly saying
that X,, converges in probability to a.

If (X,)nen is a sequence that converges in distribution to X, it is not always true
that

P(X, € B) — P(X € B)
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when B is a Borel subset of RY (take for B the set of all rational numbers in
example (c) above). Still we have the following proposition, where d B denotes the
topological boundary of a subset B of R¥.

Proposition 10.11 (Portmanteau Theorem) Let (un),eN be a sequence in
Mi(RY) and let p € M1 (RY). The following four assertions are equivalent:

(i) The sequence () converges weakly to (.
(ii) For every open subset G of R?,

liminf 1, (G) > u(G).
(iii) For every closed subset F of RY,

lim sup 1, (F) < u(F).
(iv) For every Borel subset B of R? such that u(dB) = 0,

lim 1, (B) = (B).

Proof Let us start by proving that (i)=(ii). If G is an open subset of R?, we can
find a sequence (¢p) pen of bounded continuous functions such that 0 < ¢, < 1g
and ¢, 1 1¢ (for instance, ¢, (x) = pdist(x, G°) A 1). Then

liminf s, (G) = st;p (l}gggf/ wpdun) = SI;p (fcppdu) = n(G).

The equivalence (ii)<-(iii) is immediate since complements of open sets are
closed and conversely.

Let us show that (ii) and (iii) imply (iv). If B € B (R%), write B for the closure
of B and B° for the interior of B so that 9 B = B\ B°. By (ii) and (iii), we have

lim sup t,, (B) < limsup st (B) < pu(B)
liminf u,(B) > liminf u,(B°) > u(B°).
If £w(dB) = 0then u(B) = u(B°) = u(B) and we get (iv).

We still have to prove that (iv)=-(). Let ¢ € Cp, (R?). Without loss of generality,
we can assume that ¢ > 0. Then, let K > 0 such that 0 < ¢ < K. By the Fubini

theorem,
K K
/ P(0)p(dx) = / ( / 1 =ptopde )n(dx) = / w(E)dr,
0 0
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where EY is the closed set Ef := {x € RY : ¢(x) > t}. Similarly, for every n,

K
/(P(X)Hn(dx)Z/(; pn(EY)dz.

Now note that dEY C {x € R? : ¢(x) = t}, and that there are at most countably
many values of 7 such that

px eRY 1 p(x) =1}) >0

(indeed, for every k € N, there are at most k distinct values of ¢ such that u({x €
R?: p(x) =1t}) > ,1, since the sets {x € R : ¢(x) = 1} are disjoint when ¢ varies,
and p is a probability measure). Hence (iv) implies

pn(EY) — w(ED),
n—0o0

for every ¢t € [0, K], except possibly for a countable set of values of ¢, which has
zero Lebesgue measure. By dominated convergence, we conclude that

K K
/(P(X)Mn(dX) Z/o 1 (Ef)dt njgo/() w(Ef)dr = /(p(X)M(dX)-
O

Consequence A sequence (X,),en of real random variables converges to X in
distribution if and only if the distribution functions Fy, (x) converge to Fx (x) at
every point x where Fy is continuous. The “only if” part immediately follows from
property (iv) in Proposition 10.11. In the reverse direction, suppose that Fy, (x) —
Fx (x) whenever Fy is continuous at x. Since the set of discontinuity points of Fy
is at most countable, it follows that, for every x € R,

liminf Fy, (x—) > Fx(x—),

limsup Fy, (x) < Fx(x),

where Fy(x—) denotes the left limit of Fy at x (to get the statement about the
limsup, take a sequence (xp) peRr that decreases to x, and such that Fx is continuous
at x, for every p € N, then write limsup Fx,(x) < limFy,(x,) = Fx(xp)
and note that Fx(x,) —> Fx(x) as p — o0 since Fx is right-continuous
— the statement about the liminf is derived in a similar manner). Recalling that
Px((a, b)) = Fx(b—) — Fx(a) for any a < b, it follows from the preceding display
that the property (ii) of Proposition 10.11 holds for u, = Px, and © = Px when
G is an open interval. Since any open subset of R is the disjoint union of at most
countably many open intervals, we easily get that property (ii) holds for any open
set, proving that X,, converges in distribution to X.
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Recall the notation C.(R%) for the space of all real continuous functions with
compact support on R¥.

Proposition 10.12 Let (j,)nen and p be probability measures on R?. Let H be
a subset of C,(RY) whose closure (with respect to the supremum norm) contains
C.(RY). The following properties are equivalent.

(i) The sequence ((y)neN converges weakly to L.
(i1) We have

Vo € Cc(RY), fwdun — fwdu.
n—od
(iii) We have

Vo e H, /wdunn:;ofwdu-

Proof 1t is obvious that (i)=(ii) and (i)=(iii). Then suppose that (ii) holds. Let
S Ch(Rd) and let (fx)ken be a sequence in CC(Rd) such that 0 < f; < 1 for
every k € N,and f; 1 1 ask — oo. Then, forevery k € N, ¢fy € CC(Rd) and thus

'/wﬂdmhgzk/wﬂdu. (10.2)

On the other hand,

‘/(/)dﬂn_/(pfkd,un

and similarly
| [oan= [onan|<ion(i- [ siaw).

Hence, using (10.2), we get for every k € N,

limsup‘/godun—/(pdu‘
n—o0

slimsup‘/wdun —/(pfk dpn

n—o00

< llell /(1 — fodpn = ||</)|| /fkdun ,

+‘/¢dﬂ—/¢fkdﬂ‘

= |I</)|I hmsup /fkdun 1—/fkdu)>

n—oo

= 2|I</)|I /fkdu
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Now we just have to let k tend to oo (noting that f frdw 1 1, by monotone
convergence) and we find that f ¢ du, converges to f ¢ du, so that (i) holds.

We complete the proof by verifying that (iii)=>(ii). So we assume that (iii) holds.
If o € CC(]Rd), then, for every k € N, we can find a function ¢y € H such that
llg — @kl < 1/k, and it follows that

limsup‘/(pd,un—/god,u‘
n—o0

< lim sup (‘ /((p — i) duy,

n—oo

+‘/<pkdun—f¢kdu‘+‘/(wk—fﬂ)du‘)

2
< .
~k
Since this holds for every k, we get that [ @ du, —> [@dpu. i

Recall our notatlon nE = f el w(dx) for the Fourier transform of u €
M (Rd) and @y = ]P’X for the characteristic function of a random variable X with
values in R9.

Theorem 10.13 (Lévy’s Theorem) A sequence (un)nen in Mi(RY) converges
weakly to 1 € M1 (R?) if and only if

Ve eRY. Ma(6) —> ().

Equivalently, a sequence (X,)nen of random variables with values in R? converges
in distribution to X if and only if

Ve eRT. Dy, (6) — Px(6).

Proof 1t is enough to prove the first assertion. First, if we assume that the sequence
(n)nen converges weakly to w, the definition of this convergence shows that

VEeRY, [1,(8) = / e (dx) — / e u(dx) = ().

Conversely, assume that i, (£) — 7i(£) for every & € R? and let us show that
(mn) converges weakly to . To simplify notation, we only treat the case d = 1, but
the proof in the general case is exactly similar.

Let f € C.(R), and, for every o > 0, let

W= -
s (x) = exp(— .
& o~/2m P 202



216 10 Convergence of Random Variables

be the density of the A/(0, 0%) distribution. We already observed in the proof of
Theorem 8.16 that g, * f converges pointwise to f as o — 0. Since f has compact
support here, it is not hard to verify that this convergence is uniform on R (use
Proposition 5.8 (i) and note that, for every ¢ > 0, we can find a compact set K such
that |gs * f| < e foreveryx € R\K and o € (0, 1]). Thus, if we let H be the subset
of Cp(RY) defined by

H:={p=g,*f:0>0and f € C.(RY)}
the closure of H in C»(R?) contains C,(R?)

On the other hand, we also saw in the proof of Theorem 8.16 that, for any v €
M (R),

/gg * fdv =/f(x)gg * v(x)dx
= [ (evan ! [ g @code)ar. a0

We apply this formula to v = u, and v = w. From our assumption iz, (§) —> (&)
for every & € R and the trivial bound |, (§)| < 1, we can apply the dominated
convergence theorem to get that, for every x € R,

/ei“gl/a(é)ﬁn(—é)dé = /eisxgl/a@)ﬁ(—g)dg-

Since the quantities in the last display are bounded by 1 and f € C.(R), we can
use (10.3) and again the dominated convergence theorem to get

/ga*fdun — /ga*fdu-
n—0o0

Finally, we have proved that f odu, — f ¢ du for every ¢ € H, and we
know that the closure of H in Cp (Rd) contains C, (Rd). By Proposition 10.12, this
is enough to show that the sequence (t,),eN converges weakly to u. |

10.4 Two Applications

10.4.1 The Convergence of Empirical Measures

Let (X,)nen be a sequence of independent and identically distributed random vari-
ables with values in RY. One may think of these variables as giving the successive
results of a random experiment which is repeated independently. A fundamental sta-
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tistical problem is to estimate the law of X from the data X (w), X2 (w), ..., Xy (w)
for a single value of w.

Example (Opinion Polls) Imagine that we have a large population of N individuals
numbered 1, 2, ..., N. The integer N is supposed to be very large, and one may
think of the population of a country. With each individual i € {1,..., N} we
associate a trait a(i) € R? (this may correspond, for instance, to the voting intention
of individual i at the next election). If A € B(R?), we are then interested in the
quantity

1 N
wd) = ;ma(z))

which is the proportion of individuals whose trait lies in A (for instance, the
proportion of individuals who intend to vote for a given candidate).

Since N is very large, it is impossible to compute the exact value of ((A). The
principle of an opinion poll is to choose a sample of the population, meaning that
one selects at random 7 individuals (n will be large but small in comparison with
N), hoping that the proportion of individuals whose trait belongs to A in the sample
will be close to the same proportion in the whole population, that is, to ©(A). In
more precise mathematical terms, the sample will consist of n independent random
variables Y1, ..., Y, uniformly distributed over {1, ..., N}. The trait associated
with the j-th individual in the sample is X; = a(Y;). The random variables
X1, ..., X, are also independent and have the same law given by

1 N
Px,(4) =Pla(ry e 4) = ZIA(a(i)) = u(A).
i=1

On the other hand, the proportion of individuals of the sample whose trait belongs
to A is

1< 1 o
S K@) = bx ) (A)
j=1 j=1

Finally, the question of whether proportions computed in the sample are close to
the “real” proportions in the population boils down to verifying that the so-called
empirical measure

1 n
28w
Jj=1

is close to Px, when n is large. The next theorem provides a theoretical answer to
this question.
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Theorem 10.14 Let (X,),en be a sequence of independent and identically dis-
tributed random variables with values in R. For every w € 2 and everyn € N, let
MUn.w be the probability measure on R? defined by

1 n
Mn,w = n ;5&(@)'
i=

Then we have

(w)
Uno — Px,, a.s.
n—>oo

Remark From the practical perspective, Theorem 10.14 is useless unless we have
good bounds on the speed of convergence. In the case of opinion polls for instance,
one expects that the empirical measure w, , is “sufficiently close” to Py, when n is
of order 10% (while N is typically of order 107).

Proof Let H a countable dense subset of C, (Rd) (the existence of such a subset
can be deduced, for instance, from the Stone-Weierstrass theorem), and let ¢ € H.
The strong law of large numbers ensures that

I ¢
29X = Elg(X)]
i=1

This can be reformulated as

/fﬂdun,w 25 fwle’x..
n—0o0

Since H is countable, up to discarding a countable union of sets of probability zero,
we get

/(pdun,w — /(deP’Xl, Yo € H, as.
n—o0

By Proposition 10.12, this is enough to conclude that ., converges weakly to P,
a.s. ]
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10.4.2 The Central Limit Theorem

Let (X,)nen be a sequence of independent and identically distributed real random
variables in L'. The strong law of large numbers asserts that

1 .
X1 4+ Xp) = E[X4].
n n—o0

We are now interested in the speed of this convergence, meaning that we want
information about the typical size of

1
n(X1+"‘+Xn)_E[X1]

when n is large.

Under the additional assumption that the variables X,, are in L, it is easy to
guess the answer, because a simple calculation made in the proof of the weak law
of large numbers (Theorem 9.13) gives

E[(X1+ -+ X, — nE[X1])?] = var(X] + - + X)) = nvar(X1).

This shows that the mean value of (X1 + - - - + X, — n E[X1])? grows linearly with
n, and thus the typical size of X| + --- + X, — n[E[X1] is expected to be /n, or
equivalently the typical size of rll (X1 + -+ + X») — E[X;] should be 1//n. The
central limit theorem gives a much more precise statement.

Theorem 10.15 (Central Limit Theorem) Let (X,),cn be a sequence of inde-
pendent and identically distributed real random variables in L*. Set 0> = var(X1)
and assume that o > 0. Then

1 @ 2
Jn (X1H 0 X = BIXT) 2 N0,0)

where N(0, 02) is the Gaussian distribution with mean 0 and variance o*. Hence,
foreverya,b € Rwitha < b,

lim P(X; 4+ X, € [nE[X1] 4 av/n, nE[X 1] + b/n])

n—oo

1 b x2
= exp(— )dx.
wzn/a P20

Remark When o = 0 there is not much to say since the variables X, are all equal
a.s. to the constant K[ X].

Proof The second part of the statement follows from the first one, thanks to
Proposition 10.11. To prove the first assertion, note that we can assume E[X] = 0
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(just replace X,, by X, — E[X,,]). Then set

1
Zy= (Xt X,

The characteristic function of Z,, is

bz, (§) = E[exp (iS(X1 +;)’.1+ n ))] = E[exp (1511 X1>]n = (DXl(jn)n’
(10.4)

where, in the second equality, we used the fact that the random variables X; are
independent and identically distributed. On the other hand, by Proposition 8.17, we
have

2%-2

, Tt 0(&?)

1
Oy, () = | +iEE[X,] — 252E[X%] toEH=1-"7

as &£ — 0. For every fixed £ € R, we have thus

ox (5 )=1-75 Lo
= —_ [
X Jn 2n n
as n — oo. Thanks to (10.4) and the last display, we have, for every £ € R,
2¢2 2¢2
1 \n o
lim &z (¢) = lim (1— 5 o )) —exp(-7 %),
n— 00 n— 00 n 2

and, by Lemma 8.15, the limit is the characteristic function of the Gaussian
N(0, 0?) distribution. An application of Lévy’s theorem (Theorem 10.13) now
completes the proof.

O

Special Case: de Moivre Theorem We assume that the random variables X,
follow the Bernoulli distribution with parameter 1/2, meaning that P(X,, = 1) =
P(X, = 0 = é (this was the case considered by de Moivre in 1733, and
later Laplace dealt with the more general case of the Bernoulli distribution with
parameter p € (0, 1)), Then, S, = X; 4+ --- + X, has the binomial B(n, 1/2)
distribution:

P(Snzk)zz—'l(’]:), 0<k<n.
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Since o2 = 1/4 in this special case, the central limit theorem implies that, for every

a<b,
2 b
27" E (n) — \/ / 2 dx.
k) n—o0c VN T J,

S +an<k<j+b/n

This last convergence can be verified directly (with some technical work!) via
Stirling’s formula. In fact the following more precise asymptotics hold when n —
oo,

(MY _ 2 _2 Ny
Jn?2 (k>_\/71 exp( n(k 2))—i—o(l)

where the remainder o(1) is uniform when k varies in {0, 1, ..., n}.

10.4.3 The Multidimensional Central Limit Theorem

We now assume that (X,),en is a sequence of independent and identically
distributed random variables with values in R?, such that E[|X{|] < co. We can
apply the strong law of large numbers to each component of X,, and we have

1
X1+ -+ Xp) =5 E[X1],
n n—o0o

as in the real case. If we assume furthermore that [E[| X { |2] < 00, then we expect to
have also an analog of the central limit theorem. However, in contrast with the law
of large numbers, this is not immediate because the convergence in distribution of a
sequence of random vectors does not follow from the convergence in distribution of
each component sequence (in fact, the law of the limiting vector is not determined
by its marginal distributions, as we already noticed in Chapter 8).

To extend the central limit theorem to the case of random variables with values
in R, we must first generalize the Gaussian distribution in higher dimensions.

Definition 10.16 A random variable X with values in R is called a Gaussian
vector if any linear combination of the components of X is a (real) Gaussian
variable. This is equivalent to the existence of a vector m € R? and a d x d
symmetric nonnegative definite matrix C such that, for every & € RY,

Elexp(ié - X)] = exp (ig om— ;’gcg). (10.5)

Moreover, we have then E[X] = m and Kx = C, and we say that X follows the
Gaussian N (m, C) distribution.



222 10 Convergence of Random Variables

To establish the equivalence of the two forms of the definition, first assume
that any linear combination of the components of X is Gaussian. In particular,
these components are in L? and thus the expectation E[X] and the covariance
matrix Ky are well defined. Then, for every £ € R?, we have E[¢ - X] =
& - E[X] and var(¢ - X) = '6Kx& (by (8.3)), so that & - X has the Gaussian
N(E - E[X],76Kx&) distribution. Formula (10.5), with m = E[X] and C = Ky,
now follows from Lemma 8.15 giving the characteristic function of a real Gaussian
variable. Conversely, if (10.5) holds, then by replacing & with A§ for A € R, and
using again Lemma 8.15, we get that the characteristic function of £ - X coincides
with the characteristic function of the Gaussian NV (¢ -m, £ C&) distribution, so that,
in particular, £ - X is Gaussian.

Remark In order for X to be a Gaussian vector, it is not sufficient that each
component of X is a Gaussian (real) random variable. Let us give a simple example
with d = 2. Let X1 be Gaussian A(0, 1) and let U be a random variable with law
P(U =1) =P(U = —1) = 1/2, which is independent of X. If we set X, = U X,
then one immediately checks that X5 is also Gaussian N'(0, 1). On the other hand,
(X1, X») is certainly not a Gaussian vector, because P(X; + X» = 0) = P(U =
—1) = 1/2, which makes it impossible for X; + X, to be Gaussian.

Let Yi,...,Y; be independent Gaussian (real) random variables. Then
(Y1, ...,Yy) is a Gaussian vector. Indeed we noticed at the end of Section 9.5
that any linear combination of independent Gaussian random variables is Gaussian.
Alternatively, we can also notice that formula (10.5) holds, with a diagonal matrix
C. Conversely, if the covariance matrix of a Gaussian vector is diagonal, then its
components are independent. This is an immediate application of Proposition 9.8
(iv), and we will come back to this result in the next chapter.

Proposition 10.17 Let m € RY and let C be a symmetric nonnegative definite d x d
matrix. One can construct a Gaussian Ny(m, C) random vector.

Proof 1t is enough to treat the case m = 0 (if X is Gaussian Ny (0,C), X + m
is Gaussian Ny(m, C)). Set A = +/C in such a way that A is a symmetric
nonnegative definite matrix and A2 =C.LetYy,...,Y; be independent Gaussian
N0, 1) variables, and Y = (Y1, ..., Yy), so that the covariance matrix Ky is the
identity matrix. Then X = AY follows the Gaussian N (0, C) distribution. Indeed
any linear combination of the components of X is also a linear combination of
Y1,..., Yy and is therefore Gaussian. Furthermore, by (8.2),

Kx = AKy'A = A> = C,

which shows that X is Gaussian N (0, C). O
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Theorem 10.18 (Multidimensional Central Limit Theorem) Let (X,),cN be a
sequence of independent and identically distributed random variables with values
in R4, such that IE[|X1|2] < 0. Then,

1 (d)
(X1 Xy = nEIX1]) 7 Na(0. Kx)

Vv

Proof Replacing X, by X, — E[X,,] allows us to assume that E[ X ;] = 0. For every
& e R, the central limit theorem in the real case (Theorem 10.15) shows that

Ve x4 te-x0 9 NGO 0Y
«/Vl n—00

where 02 = E[(£ - X1)?] = '€Kx,&. This implies that

Xi+-- 4 Xy

Jn

and Lévy’s theorem (Theorem 10.13) gives the desired result. O

B[ exp (i€ - ( )| = eXp(—;’Eleé)

10.5 Exercises

Exercise 10.1 In this exercise, to emphasize the dependence on the underlying
probability measure, we speak of convergence in P-probability instead of conver-
gence in probability. Let (X,),en be a sequence of real random variables such that
X,, converges in P-probability to X when n — oo. Suppose that P’ is another
probability measure on (2, A) and that P’ is absolutely continuous with respect to
IP. Show that X,, also converges in ’’-probability to X when n — oo.

Exercise 10.2 Let f : [0, 1] — R be a continuous function. Prove that

1
lim f(xl trt +xn)dx1dx2...dxn = ().
n—o0 [011]11 n 2

Exercise 10.3 (Bernstein Polynomials) Let f : [0,1] — R be a continuous
function. Prove that, for every p € [0, 1],

f(py= lim 3~ (Z) P = p)" ™ fk/n),
k=0

and that the convergence holds uniformly in p € [0, 1].
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Exercise 10.4

(1) Let f : R+ — R be a bounded continuous function. Prove that, for every
A >0,

& k
Jim eSO pwgmy = £, (10.6)
k=0 ’

and that the convergence is uniform when XA varies in a bounded subset of
(0, 00).

(2) Suppose that f is only bounded and measurable, and is continuous at x = A.
Prove that the convergence in (10.6) still holds.

(3) Let u be a probability measure on R, and let L(L) = f e ™ u(dy), for A > 0,
be its Laplace transform. For every A > 0, write L (1) for the k-th derivative
of L at A (justify its existence!). Prove that, for every x € [0, oo) such that
n({x}) =0,

[nx] (_1)k
H([O,X])=HILH;O]CZ: k! nkL(k)(n).
=0

Exercise 10.5 (Coupon Collector Problem) Suppose that, for every n € N,
X ,(C”)) k>1 is a sequence of independent random variables uniformly distributed on

{1,2,...,n}. For every integer m > 1, let N,(,,n) be the number of distinct values in
the finite sequence X(n), Xén), R X,(qf), and set

T, =inf{m > 1: NV = n},

If we observe the values X E"), X g"), ... one after the other, T}, is the first time when

all possible values have been observed.

(1) Foreveryk € {1,...,n},set r,ﬁ”) —=inf{m > 1 : N = k), so that in particular
T, = 7\"). Show that the random variables tk(") — r,i’i)l, fork € {2,...,n}, are

independent, and the distribution of r,i") - r,i’i)l — 1 is geometric of parameter

(k—1)/n.
(2) Prove that

T,
— 1
nlogn n—oo

in probability. (Hint: Estimate the expected value and the variance of T;,).
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Exercise 10.6 Let (X,),cn and (Y;),en be two sequences of real random vari-
ables, and let X and Y be two real random variables. Is it always true that the
properties

d d
X, 2% x and v, Ly
n—oo n—oo

d
imply that (X,,, ¥,) ~2 (X, Y) ? Show that this fact holds in each of the following

n—o00
two cases:

(i) The random variable Y is constant a.s.
(i1) Foreveryn € N, X, and Y,, are independent, and X and Y are independent.

Exercise 10.7 Let u be a probability measure on R, and for every n € N,

pn(d) = ) (k27" (k + 1)27) g2 (d).
keZ
Show that the sequence p, converges weakly to u.
Exercise 10.8 Suppose that, for every n € N, Y, is a Gaussian N (m,,, anz) random
variable, where m, € R and 0,, > 0. Prove that the sequence (Y;),eN converges in

distribution if and only if the two sequences (m,) and (o, ) converge, and identify
the limiting distribution in that case.

Exercise 10.9 Let (Z,),cn be a sequence of random variables with values in R,
and let (a,)neN be a sequence of reals. Assume that Z,, converges in distribution to
Z and a, converges to a as n — oo. Prove that a, Z, converges in distribution to
aZ. (Hint: Use Proposition 10.12, and note that the space H in this proposition can
be chosen to contain only Lipschitz functions).

Exercise 10.10 Let (X,),cn be a sequence of independent and identically dis-
tributed random variables. For every n € N, set M, = max{Xy, ..., X,;}.

(1) Suppose that X, is uniformly distributed over [0, 1]. Prove that n(1 — M,)
converges in distribution and identify the limit.

(2) Suppose that X, is distributed according to the Cauchy distribution of parameter
1. Show that n/M,, converges in distribution and identify the limit.
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Exercise 10.11

(1) Let (X,),en be a sequence of independent and identically distributed real
random variables in L2, such that E[X,] = 1 and var(X,) > 0. Set S, =
X1+ -+ X,. Show that the limit

lim P(S, < n)
n—>oo

exists and compute it.
n k
n
: —-n
(2) Compute nlggo e kg . o

Exercise 10.12 (Glivenko-Cantelli Theorem) Let (X)), <y be a sequence of inde-
pendent and identically distributed real random variables with distribution function
F. For every integer n € N and every x € R, define the random variable

1
Fn(x)zncard{je{l,...,n}:Xj§x},

which is the distribution function of the empirical measure associated with
X1,..., X,. Prove that a.s.,

lim sup |F,(x) — F(x)| =0.
}’l*)OOxER

Compare with Theorem 10.14. (Hint: It may be useful to assume that the random
variables X, are represented as in Lemma 8.7).

Exercise 10.13 Let (X,),cn be a sequence of independent and identically dis-
tributed random variables in L2, such that E[X,] = 0 and var(X,) > 0. Set
Sp=X1+--+ Xp.

(1) Prove that

. Sn
lim sup =00, as.
n— 00 n

(2) Prove that the sequence Sy, /+/n does not converge in probability.
(3) Prove that the limit

lim P(S, > 0, S2, < 0)
n—o0

exists and compute this limit.



Chapter 11 )
Conditioning et

This chapter is devoted to the construction and properties of the conditional
expectation with respect to a sub-o-field. Such a sub-o-field B may be interpreted
as containing some partial information, and the conditional expectation of a real
random variable X with respect to B can be understood intuitively as the mean
value of X knowing this partial information. In more precise terms, and assuming
that X is in L2, the conditional expectation of X with respect to B is the B-
measurable random variable that is closest to X in the L? sense. The motivation
for considering conditional expectations comes from many problems of applied
probability, including prediction, filtering, risk theory, etc.

In the first section, we discuss the discrete setting, which helps to understand the
axiomatic definition of conditional expectation in the general case. This axiomatic
definition involves a fundamental “characteristic property”, which plays an essen-
tial role in the study of properties of the conditional expectation. The effective
calculation of conditional expectations is in general a difficult problem, but we
provide statements showing that it sometimes becomes tractable under appropriate
independence assumptions. We also discuss several “concrete” cases where explicit
formulas can be given. The last section introduces the notion of conditional law,
which is useful in this book mainly from a conceptual point of view.

11.1 Discrete Conditioning

As in the previous chapters, we consider a probability space (£2, A, IP). We already
mentioned in Chapter 9 that, if B € A is an event of positive probability, we can
define a new probability measure on (§2, A) by setting, for every A € A,

P(ANB
P(A|B) := ( )
P(B)
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This probability measure A — P(A | B) is called the conditional probability given
B. Similarly, for every nonnegative random variable X, or for X € Ll(.Q, A, P),
the conditional expectation of X given B is defined by

E[X 1]

E[X|B] := PB)

and one verifies that E[ X | B] is also the expected value of X under P(-| B). We can
interpret E[X | B] as the mean value of X knowing that the event B occurs.

Let us now define the conditional expectation knowing a discrete random
variable. We consider a random variable Y taking values in a countable space E
equipped as usual with the o-field of all its subsets. Let E' ={y € E: P(Y = y) >
0. If X € L! (2, A, P), we may consider, for every y € E’,

E[X 1iy=y]
EIX|Y =y]= , "
P(Y =y)
as a special case of the conditional expectation E[X | B] when P(B) > 0.

Definition 11.1 Let X € L'(£2, A, P). The conditional expectation of X knowing
Y is the real random variable

E[X|Y]= (),
where the function ¢ : E — R is given by

E[X|Y = y]ify € E/,

¢(y):{0 ify e E\E.

Remark In this definition, the choice of the value of ¢(y) when y € E\E' is
irrelevant. Indeed this choice influences the definition of E[X | Y] = ¢(Y) only
on a set of zero probability, since

P(Y € E\E') = Z P(Y =y) =0.
yeE\E'

In what follows, we will consider conditional expectations in a much more general
setting, but they will always be defined up to a set of zero probability.

Comparing with the conditioning with respect to an event, we note that E[X | Y]
is now a random variable. This is the random variable that gives the mean value of
X when the value of Y is known. Indeed, by definition, we have a.s.

EX|Y(w) =E[X|Y =y] ifY(o)=y.
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We also note that IE[ X | Y] is a function of Y hence is o (Y)-measurable. In a sense
that will be made precise later, this is the best approximation of X by a function of
Y.

Example Throwing a die. We take 2 = {1,2,...,6} and P({w}) = ! for every
w € £2. Set

1 if w is odd
Y = ’
(@) {0 if w even,
and X (w) = w. Then,
3ifwe{l1,3,5},
E[X|Y =
[X1Y@) {4ifa) € {2, 4,6).

Proposition 11.2 Ler X € L'(2, A, IP). We have E[|E[X | Y]|] < E[|X|], and
thus E[X | Y] € L' (82, A, P). Moreover, for every bounded o (Y )-measurable real
random variable Z,

E[Z X] =E[ZE[X|Y]].

Proof From the definition of E[X | Y], we have

E[X1
EIEX (1= SRy =) o M=l S gy
7 P =y) 7
ye ye
= E[1X1 ) 1y
yeE
— E[|X]].

If Z is o (Y)-measurable and bounded, Proposition 8.9 allows us to find a bounded
function ¥ : E — R such that Z = ¢/(Y), and then,

Ely (V) EX Y]] =Y ¢ EX Ly—yl= > E[Y (V)X Ly—y)]

yeE yeE

=E[y(X Y 1=y

yeE

= E[y(Y)X].

In the third equality, the interchange of the expected value and the sum is justified
by the Fubini theorem, noting that E[|¢(Y)X|] < oo. |
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Consequence Let Y’ be another discrete random variable such that o (Y) = o (Y”).
We claim that

E(X|Y]=E[X|Y] as.

To prove this, apply Proposition 11.2 with Z = Iigx|y)>E[x|y1}, Which is
measurable with respect to o (Y) = o (¥’) since so are both E[X | Y] and E[X | Y'] .
It follows that

ELgxyi=Exyy EX YT -E[X YD =0

which is only possible if 1(r[x|y)>E(x;y ) (E[X | Y] —E[X | Y']) = 0, a.s., hence
E[X | Y] < E[X | Y'] a.s. By interchanging the roles of ¥ and Y’, we obtain the
reverse inequality, and we have proved that E[X | Y] = E[X | Y'] a.s. This argument
also shows that the last assertion of Proposition 11.2 characterizes E[X | Y] among
random variables that are both integrable and o (Y)-measurable.

The preceding discussion suggests that the “good” notion of conditioning is
conditioning with respect to a sub-o-field of A. We will define this notion in the
next section, and the analog of the last assertion of Proposition 11.2 will serve as a
major ingredient for the generalizations that follow.

11.2 The Definition of Conditional Expectation

11.2.1 Integrable Random Variables

The next theorem provides the definition of the conditional expectation of an
integrable random variable with respect to a sub-o -field.

Theorem and definition 11.3 Ler B be a sub-o-field of A, and let X €
L'(£2, A, P). There exists a unique element of L'(82, B,P), which is denoted
by E[X | B], such that

VB e B, E[X1p]=E[E[X|B]1z]. (11.1)
We have more generally, for every bounded B-measurable real random variable Z,

E[X Z] = E[E[X | B] Z]. (11.2)

If X >0, we have E[X | B] > 0 a.s.

The crucial point is the fact that E[X | B] is B-measurable. Either of proper-
ties (11.1) and (11.2) characterizes the conditional expectation E[X | B] among
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random variables of L' (82, B, P). In what follows, we will refer to (11.1) or (11.2)
as the characteristic property of E[X | B].

In the special case where B = o (Y) is generated by a random variable Y, we will
write indifferently

E[X|B] = E[X|o(Y)] = E[X|Y].

This notation is consistent with the discrete case considered in the previous section
(compare (11.2) and Proposition 11.2).

Proof Let us start by proving uniqueness. Let X’ and X” be two random variables
in Ll(.Q, B, P) such that

VB e B, E[X'1g]=E[X13]=FE[X"1p].

Taking B = {X’ > X"} (which is in B since both X’ and X" are B-measurable), we
get

E[(X" — X")x-x1] =0

which implies that X’ < X” a.s., and we have similarly X" > X” a.s. Thus X’ = X”
a.s., which means that X’ and X” are equal as elements of L' (£2, B, P).

Let us now turn to existence. We first assume that X > 0, and we let Q be the
finite measure on (£2, 3) defined by

VBeB, Q(B):=E[X13g]

Let us emphasize that we define Q(B) only for B € . We may also view P as a
probability measure on (£2, B), by restricting the mapping B — P(B) to B € B,
and it is immediate that Q <« P. The Radon-Nikodym theorem (Theorem 4.11)
applied to the probability measures P and Q on the measurable space (£2, BB) yields
the existence of a nonnegative B-measurable random variable X such that

VBe B, E[X1z]=Q(B)=E[X13].

Taking B = £2, we have E[X] = E[X] < oo, and thus X € L'(52, B, P). The
random variable E[X | B] = X satisfies (11.1). When X is of arbitrary sign, we just
have to take

E[X|Bl=E[XT|B]—-E[X|B]

and it is clear that (11.1) also holds in that case.

Finally, to see that (11.1) implies (11.2), we rely on the usual measure-theoretic
arguments. (11.2) follows from (11.1) when Z is a simple random variable (taking
only finitely many values), and in the general case Proposition 2.5 allows us to write
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Z as the pointwise limit of a sequence (Z,),en of simple B-measurable random
variables that are uniformly bounded by the same constant K (such that |Z| < K)
and the dominated convergence theorem yields the desired result. O

We emphasize that the preceding statement defines E[X | B] as an element of
L! (£2, B, P), that is, as an equivalence class of 3-measurable random variables that
are almost surely equal. In many of the forthcoming formulas involving conditional
expectations, it would therefore be appropriate to include the mention “almost
surely”, but we will often omit this mention.

Example Let 2 = (0,1], A = B((0, 1]) and P(dw) = dw. Let B be the o-field
generated by the intervals (’*1 '1,i € {1,...,n}, where n > 1is fixed. If f €

n ’n

L'(£2, A, P) we have fol | f(w)|dw < oo, and one easily verifies that

ELfIBI=) fili1 i),
i=1

-1 i

n ’>ni’

where f; = nf(’;./:'l)/n f(w)dw is the mean value of f on (*

Properties of Conditional Expectation

(a) If X € L'(£2, A, P) and X is B-measurable, then E[X | B] = X.

(b) The mapping X +— E[X |B]is linear on L' (£2, A, P).

(c) If X € L' (2, A, P), E[E[X | B]] = E[X].

(d) If X € L'(£2, A, P), then |E[X | B]| < E[|X]| | B] a.s. and, consequently,
E[|E[X | B]|] < E[|X]]. Therefore the mapping X +— E[X | B] is a contraction
of L'(£2, A, P).

(e) f X, X' e L'(2, A,P)and X > X', then E[X | B] > E[X’|B] a.s.

Proof (a) immediately folllows from uniqueness in Theorem 11.3. Similarly, for
(b), we observe that, if X, X’ € L1(£2, A, P) and @, &’ € R, the random variable

aE[X |B]+ «'E[X'|B]
satisfies the characteristic property (11.1) for the conditional expectation of ¢ X +
o’ X'. Property (c) is the special case B = §2 in (11.1). As for (d), using the fact that
X > 0implies E[X | B] > 0, we have
|ELX | B]| = |E[X" | B] — E[X ™ | B]| < E[X™ | Bl + E[X~ | B] = E[|X||B].

Finally, (e) is immediate by linearity. O
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11.2.2 Nonnegative Random Variables

We now turn to the definition of E[X | B] for a nonnegative random variable X.
In a way similar to the integral of nonnegative functions in Chapter 2, it will be
convenient to allow X to take the value +o0.

Theorem 11.4 Let X be a random variable with values in [0, o0]. There exists a
B-measurable random variable with values in [0, 0o], which is denoted by E[X | B]
and is such that, for every nonnegative B-measurable random variable Z,

E[X Z] = E[E[X | B] Z]. (11.3)
Furthermore E[X | B] is unique up to a B-measurable set of probability zero.

Remark The uniqueness part of the theorem means that (as in the integrable case)
we should view E[X | B] as an equivalence class of B-measurable random variables
that are equal a.s. But of course it will be more convenient to speak about “the
random variable” E[X | B].

In the case where X is also integrable, the definition of the preceding theorem
is consistent with that of Theorem 11.3. Indeed (11.3) with Z = 1 shows that
E[E[X | B]] = E[X], and in particular E[X | B] < oo a.s. (so that we can take
a representative with values in [0, 00)) and E[X | B] € L'. We then just have to note
that (11.1) is the special case of (11.3) where Z = 15, B € B.

Similarly as in the case of integrable variables, we will refer to (11.3) (or to its
variant when Z = 1p, B € B) as the characteristic property of E[X | B].

Proof We define E[X | B] by setting
E[X|B]:= lim 1 E[X An|B] a.s.
n—oo

This definition makes sense because, for every n € N, X A n is bounded hence
integrable and thus E[X An | B] is well defined by the previous section. Furthermore,
the fact that the sequence (E[X An | B]),en is (a.s.) increasing follows from property
(e) above. Then, if Z is nonnegative and B-measurable, the monotone convergence
theorem implies that

E[E[X|B]Z]= lim E[E[X An|BIZAm]= lim E[(X An)(ZAn)] = E[XZ].

It remains to establish uniqueness. Let X’ and X” be two B-measurable random
variables with values in [0, oo], such that

E[X'Z] = E[X"Z]
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for every nonnegative 3-measurable random variable Z. Let us fix two nonnegative
rationals a < b, and take

Z = lix'<q<b<x"}-
It follows that

a]P’(X’ <a<b< XN) > E[I{X/§a<hfxﬂ}x/]
= E[1{x'<qa<p<x1X"]
>bP(X' <a<b<X')

which is only possible if P(X’ < a < b < X”) = 0. Hence,

]P’( U {X’§a<b§X”})=O
a,b€Q+
a<b

which implies X’ > X” a.s., and interchanging the roles of X’ and X" also gives
X" > X" as. O

Remark We may have X < oo a.s. and at the same time E[X | B] = oo with positive
probability. For instance, if B = {@, §2}, it is immediate to verify that E[X | B] =
E[X], which may be infinite even if X < oo a.s. To give a (slightly) less trivial
example, consider again the case £2 = (0, 1], B = o((’;l, ,"l]; ief{l,...,n}) and
P(dw) = do. Then, if X () = !, we have

i

n
E[X |B] =00l 1)+ don log(, )¢t 1,
i=2

Properties . In the statement of the following properties, “nonnegative” means
“with values in [0, co]”.

(a) If X and X’ are nonnegative random variables, and a, b > 0,
ElaX +bX'|Bl =aE[X|B]+ bE[X'|B].
(b) If X is nonnegative and B-measurable, E[ X | B] = X.
(c) For any nonnegative random variable X, E[E[X | B]] = E[X].
(d) If (X,)nen is an increasing sequence of nonnegative random variables, and X =

lim 1 X, then

E[X|B] = lim 1 E[X,|B], as.
n—0o0
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As a useful consequence, if (¥,),en is a sequence of nonnegative random
variables, we have

IE[Z Y, B] = S ElY,|Bl.

neN neN

(e) If (X,)nen is any sequence of nonnegative random variables
E[liminf X, | B] < liminfE[X,, |B], a.s.

(f) Let (X,)nen be a sequence of integrable random variables that converges a.s. to
X. Assume that there exists a nonnegative random variable Z such that | X,| <
Z as. forevery n € N, and E[Z] < oo. Then,

E[X|B]= lim E[X,|B]. as. andin L'

(g) (Jensen’s Inequality for Conditional Expectations) If f : R — R is convex,
andif X € L',

E[f(X)|B] = f(ELX|B]).

Remarks (i) Of course (d)—(g) are the analogs for conditional expectations of
properties of integrals with respect to a measure that were established in Chapter 2.
The proofs below are indeed very similar to the proofs given in Chapter 2.

(ii1) As we already mentioned, the words “almost surely” should appear in any
statement involving a conditional expectation (in particular in (a), (b), (g) above).

Proof (a) and (b) are easy using the characteristic property (11.3), and (c) is the
special case Z = 1in (11.3).

(d) It follows from (a) that we have E[X | B] > E[Y | B]if X > Y > 0. Under
the assumptions of (d), we can therefore set X’ = lim 1 E[X, | B], which is a
B-measurable random variable with values in [0, co]. Then, for every nonnegative
B-measurable random variable Z, the monotone convergence theorem gives

E[ZX'] = lim 1 E[ZE[X,|B]] = lim 1 E[Z X,] = E[ZX]
which implies X’ = E[X | B] thanks to the characteristic property (11.3). The

second assertion in (d) follows by applying the firstone to X,, = Y1 +--- + ¥;.
(e) Using (d), we have

E[liminf X,, | B] = IE[kliTrglo 4 (gg X) ‘ B]

5]

= lim 1 IE[ inf X,
ktoo n>k
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= lim (jng B0 181)
= liminfE[X,, | B].
(f) It suffices to apply (e) twice:
E[Z — X |B] = E[liminf(Z — X,,) | B] < E[Z|B] — limsupE[X,, | B]
E[Z + X |B] = E[liminf(Z + X,,) | B] < E[Z|B] + liminfE[X,, | B]
which leads to

E[X | B] < liminfE[X, | B] < limsup E[X,, | B] < E[X|B],

giving the desired almost sure convergence. The convergence in L' is now a
consequence of the dominated convergence theorem, since we have |E[X,, | B]| <
E[|X,||B] <E[Z|B]and E[E[Z | B]] = E[Z] < oc.

(g) Set

E;={(a,b) e R*:Vx € R, f(x) > ax +b}.
Then,

Vx € R?, fx)= sup (ax+by= sup (ax +Db).
(a,b)eEy (a,b)eE ;NQ?

We can take advantage of the fact that Q? is countable to disgard a countable
collection of sets of probability zero and to get that, a.s.,

E[f(X)lB]:]E[ sup 2(aX+b)‘B]
(a.b)eE;NQ

>  sup  E[aX +b|B]= fE[X|B]). -
(a,b)eE ;NQ2

As a consequence of Jensen’s inequality, we obtain that, for every p > 1, X
E[X | Bl maps L?(£2, A, P) into itself, and is a contraction of L?(£2, A, P). Indeed,
forevery X € LP(£2, A, IP), we have using property (d) in Section 11.2.1,

E[E[X | B1I”] < E[E[|X]| | BI”] < E[E[1X|”|B]] = E[|X|"].

This contraction property also holds for p = oo.
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Remark By analogy with the formula P(A) = E[14], we often write, for every
Aec A,

P(A|B) = E[14]|B].

Beware that P(A | B) is a random variable and not a constant !

11.2.3 The Special Case of Square Integrable Variables

In the case where X is in L2, there is another remarkable interpretation of
E[X | B], which involves the Hilbert space structure of L>. Before giving the
precise statement, let us observe that LZ(Q, B, P) is isometrically identified to a
closed subspace of L?(£2, A, P), namely the subspace consisting of all elements
of LZ(Q, A, P) that have at least one representative which is 5-measurable. We
can thus make sense of the orthogonal projection of an element of the Hilbert
space L%(£2, A, P) on the (closed) subspace L?(82, B, P), see Theorem A.3 in the
Appendix.

Theorem 11.5 If X € L*(£2, A, P), then E[X | B] is the orthogonal projection of
X on L%(£2, B, P).

Proof Jensen’s inequality shows that E[X | B]> < E[X? | B], a.s. This implies that
E[E[X | B]?] < E[E[X?|B]] = E[X?] < 0o, and thus the random variable E[ X | B]
belongs to L%(£2, B, P).

On the other hand, for every bounded B-measurable random variable Z,

E[Z(X —E[X |B])] = E[ZX] — E[ZE[X | B]] = O,

by the characteristic property (11.2). Hence X — E[X | B] is orthogonal to the
space of all bounded B-measurable random variables, and the latter space is dense
in L2(£2, B, P) (for instance by Theorem 4.8). It follows that X — E[X | B] is
orthogonal to L2(.Q, B, P), which gives the desired result. m]

Remark We could have used the property stated in the last theorem to give an
alternative construction of the conditional expectation (starting with the case of
square integrable random variables) and this construction would have avoided
the use of the Radon-Nikodym theorem—however some work would have been
necessary to extend the definition to the integrable and the nonnegative case.

We observe that Theorem 11.5 and the property of orthogonal projections stated
in Theorem A.3 lead to an interesting interpretation of the conditional expectation
of a square integrable random variable: E[X | 3] is the best approximation of X
by a B-measurable random variable, in the sense that, for any other B-measurable
random variable Y, we have E[(Y — X)2] > E[(E[X | B] — X)?].
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To illustrate the last observation, let Yp, ..., Yx be real random variables. By
Proposition 8.9, any o (Y1, ..., Yx)-measurable random variable can be written as
a Borel measurable function of (Y7, ..., Yx). Consequently, if X € L2(.Q, A, P),
there exists a measurable function ¢ : R¥ — R such that Ele(Yy, ..., Yk)z] < 0
and

E[X|Y1,....Y ] =1, ..., Y.
Moreover, we have

E[(X —@(Y1,....Y:)*1= inf E[(X —g(Y1,..., Y )%, (11.4)
gRF—R

where the infimum is over all Borel measurable functions g : R¥ —> R. Note
that we should a priori restrict the infimum in (11.4) to functions g such that
Elg(Yy,..., Yk)z] < 00, but in fact, if g does not satisfy this condition, one has
EL(X — g(Y1, ..., ¥))*] = co.

It is interesting to compare (11.4) with Proposition 8.13, which was concerned
with the best approximation of X by an affine function of (Y1, ..., Yx). Here it
seems that we are doing much better, since we can consider any (measurable)
function of (Y7, ..., Yx). However, computing a conditional expectation is usually a
hard problem, whereas finding the approximation in Proposition 8.13 only involves
solving a finite-dimensional linear system.

11.3 Specific Properties of the Conditional Expectation

Most of the properties of conditional expectations that we have derived until now
were very similar to the properties of the integral of measurable functions. In this
section we derive more specific properties of conditional expectations. The next two
propositions are extremely useful when manipulating conditional expectations.

Proposition 11.6 Ler X and Y be real random variables and assume that Y is B-
measurable. Then

E[YX|B] =Y E[X |B]

provided X and Y are both nonnegative, or X and Y X are both integrable.

Proof Suppose that X > 0 and Y > 0. Then, for every nonnegative 3-measurable
random variable Z, we have

E[Z(YE[X|BD] = E[(ZV)E[X | B]] = E[ZY X],
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using (11.3) and the fact that ZY is B-measurable. Since YE[X | B] is a nonnegative
B-measurable random variable, the characteristic property (11.3) implies that
YE[X |B]=E[YX|B].

In the case when X and Y X are integrable, we get the desired result by
decomposing X = XT — X~ andY =Y*T - Y. O

Proposition 11.7 (Nested o-Fields) Let By and By be two sub-o -fields of A such
that By C By. Then, for every nonnegative (or integrable) random variable X, we
have

E[E[X | B2]1B1] = E[X | B1].

Remark We have also E[E[X | B1]| B2] = E[X | B1] under the same assumptions,
but this is trivial since E[X | B1] is By-measurable.

Proof Consider the case where X > 0. Let Z be a nonnegative Bj-measurable
random variable. Then, since Z is also 3y-measurable,

E[ZE[E[X | B211B11] = E[Z E[X | B>]] = E[ZX].

Hence E[E[X | By] | Bi] satisfies the characteristic property of E[X | B;], and the
desired result follows. |

The next theorem provides a characterization of independence in terms of
conditional expectations.

Theorem 11.8 Two sub-o-fields By and By of A are independent if and only if,
for every B € By, we have E[1p | B1] = P(B). Furthermore, if B and B, are
independent, we have also E[X | B1] = E[X] for every nonnegative B>-measurable
random variable X and for every X € L (2, By, P).

Proof Suppose that B; and B; are independent, and let X be a nonnegative ;-
measurable random variable Then, for every nonnegative 3;-measurable random
variable Z, Z and X are independent and thus

E[ZX] = E[Z]E[X] = E[Z E[X]],
and thus the constant random variable E[X] satisfies the characteristic prop-
erty (11.3) of E[X | Bj], which implies that E[X | B;] = E[X]. We obtain the

same result in the case where X integrable by decomposing X = X — X .
Conversely, suppose that

VB e By, E[lp|Bi]l=P(B).
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Then, for every A € By, B € B,
P(ANB) = E[1415] = E[14 E[15|B1]] = E[14 P(B)] = P(A)P(B)
which shows that the o-fields 3; and B, are independent. |

Remark Let X and Y be two real random variables. Since the real random
variables that are o (X)-measurable are exactly the measurable functions of X
(Proposition 8.9), the preceding theorem shows that X and Y are independent if
and only if

E[r(X)|Y] = E[r(X)]

for every Borel function # : R — R such that E[|A(X)|] < co. Assuming that X
is integrable, we have in particular

E[X Y] =E[X].

However, this last property alone is not sufficient to infer that X and Y are
independent. Let us illustrate this on an example. Suppose that X is Gaussian
N(0, 1), and that Y = | X|. Any bounded o (Y )-measurable random variable Z is of
the form Z = g(Y), where g is measurable and bounded, and thus

1 o0
E[ZX]=E[g(X)X] = / g(lyye ™2 dy =0,
«/27'[ —0o0

by a symmetry argument. It follows that E[X | Y] = 0 = E[X], but X and Y are of
course not independent.

We conclude this section with two other results relating the notions of conditional
expectation and independence, which are often useful for explicit calculations of
conditional expectations.

Theorem 11.9 Let (E, &) and (F, F) be two measurable spaces, and let X and
Y be random variables taking values in E and F respectively. Assume that X is
independent of B and that Y is B-measurable.Then, for every £ @ F-measurable
function g : E x F — Ry,

Elg(X,Y) | Bl = /g(x, Y) Px (dx),

where we recall that Py denotes the law of X. The right-hand side is the composition
of the random variable Y with the mapping ¥ : F —> Ry defined by ¥ (y) =

[ g(x, y) Px(dx).



11.3  Specific Properties of the Conditional Expectation 241

Remark The mapping ¥ is measurable thanks to the Fubini theorem. The theorem
can be explained informally as follows. If we condition with respect to the o -field
B, the random variable Y, which is B-measurable, behaves like a constant, but on
the other hand B gives no information on the random variable X. Thus the best
approximation of g(X, Y)) knowing B is obtained by integrating g(-, Y') with respect
to the law of X.

Proof We have to prove that, for any nonnegative B-measurable random variable
Z, we have

Elg(X,Y)Z] = E[¥(Y)Z].
Write Py y, 7y for the law of the triple (X, Y, Z), which is a probability measure on

E x F x R.. Since X is independent of 53, X is independent of the pair (Y, Z), and
therefore P x,y, 7) = Px ® [y, z). Then, using the Fubini theorem, we have

Elg(X,Y)Z] = /g(x, )z Px y,z)(dxdydz)

= /g(x,y)z Px (dx)Py, z)(dydz)

= [ #([ sronpe@n)rop @
FxR4 E

= / ¥ (y) Py, zy(dydz)
FXR+
— E[¥(Y)Z]

which was the desired result. O

Recall that, if B and B’ are two sub-o-fields of A, B v B’ denotes the smallest
o -field that contains both B and B'.

Proposition 11.10 Ler Z be a random variable in L', and let 1 and H, be two
sub-o -fields of A. Assume that Hy is independent of 6 (Z) v ‘Hy. Then,

E[Z|H1 Vv H2] = E[Z|Hi]
Proof 1t suffices to prove that the equality

E[14Z] = E[14E[Z | H1]] (1L.5)
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holds for every A € H; Vv H,. Consider first the case where A = B N C, with
B € Hp and C € H;. Then, we have
E[14Z] = E[lc x 13Z] = P(C)E[1pZ] = P(O)E[1E[Z | H1]]
= E[lc x 13E[Z|H1]]
= E[14E[Z | H1]].
Thus the class of all sets A € H; Vv H; that satisfy (11.5) contains a class closed
under finite intersections that generates the o-field H; Vv H>. An easy application

of the monotone class theorem (Theorem 1.18) shows that (11.5) holds for every
A € HiV Hs. m]

11.4 Evaluation of Conditional Expectation

11.4.1 Discrete Conditioning

Let Y be a random variable with values in a countable space E, and let X €
L! (£2, A, P). Then, we have already seen that

E[X|Y] = oY)
where
_ ElX 1y=y]
p(y) = P(Y = y)

for every y € E such that P(Y = y) > 0 (and ¢(y) can be chosen in an arbitrary
manner when P(Y = y) = 0).

11.4.2 Random Variables with a Density

Let X and Y be two random variables with values in R™ and R” respectively. We
assume that the law of the pair (X, Y) has a density with respect to Lebesgue
measure, which is denoted by p(x,y), forx € R™ and y € R”. Then, for every
Borel measurable function f : R” x R" — R4,

E[f(X, Y)]=f]R nf(x,y)p(x,y)dxdy

xR
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An easy generalization of Proposition 8.6 shows that Y has a density given by

q(y)=/ p(x,y)dx, foryeR"
Rm

The right-hand side may be equal to co on a set of values of y of zero Lebesgue
measure: to ensure that g takes values in R4, we agree to take g(y) = O if

[ p(x. y)dx = oo.
Nextlet & : R" — R be a measurable function. We may compute E[4(X) | Y]
as follows. For every measurable function g : R* — R, we have

E[r(X)g(Y)] = f h(x) g(y) p(x, y) dxdy

RmxR"

= /n (/m h(x) p(x,y) dx)g(y) dy
- / (/m h(x) p(, y)dx)g(y) Lign=0)dy.

where the last equality is justified by observing that for Lebesgue a.e. y such that
q(y) = 0, we have p(x, y) = 0, dx a.e., and thus fh(x) p(x,y)dx = 0. Then,

Jrm B(x) p(x, y) dx

Eh(X)g(Y)] =
meog = [ (B

)8() 40 ig5)-0 4y

= /Rn () g(¥) gV iyy»>0ydy
= E[p(Y) g(Y)],

where we have set

1
/Ih@)MLYNUEQU)>Q
q(y) Jrm
h(0) ifq() =0

p(y) =

(the value of ¢(y) when g(y) = 0 can be chosen in an arbitrary way: the choice of
the value /(0) will be convenient for the next statement).

It follows from the preceding calculation and the characteristic property of the
conditional expectation that we have

E[R(X) Y] = o).

We reformulate this in a slightly different manner.
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Proposition 11.11 For every y € R”, let v(y, dx) be the probability measure on
R™ defined by

1 .
by, dx) = | g(y) PE P X Ta) >0,
do(dx) ifq(y) =0.

Then, for every measurable function h : R" — R, we have
Eh(X)|Y] = /h(x) v(Y, dx).
We often write, in a slightly abusive manner, for every y € R such that g(y) > 0,
ErX)|Y =y]= /h(X) v(y,dx) = q(ly) /h(X) p(x,y)dx,

and we say that

p(x,y)
H
q(y)

is the conditional density of X knowing that Y = y.

Remark In the setting of Proposition 11.11, one has more generally, for any
measurable function /2 : R x R" — Ry,

E[h(X,Y)|Y] = /h(x, Y) v(Y, dx).

See Exercise 11.13.

11.4.3 Gaussian Conditioning

Let X, Y1,...,Y, be p + 1 real random variables in Lz(.Q, A, P). As we saw in
Section 11.2.3, the conditional expectation

E[X|Y,...,Y,]

is the orthogonal projection of X on the space Lz(.Q, o(Y1,...,Yp), P), which
is typically an infinite-dimensional linear space. This orthogonal projection is the
best approximation of X (in the L? sense) by a random variable of the form
(Y1, ...,Yp) (see the remarks following Theorem 11.5).
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On the other hand, we also studied (in Section 8.2.2) the best approximation
of X by an affine function of Y1, ..., Y,, which is the orthogonal projection of X
on the vector space spanned by 1, Y1, ..., Y. In general, the latter projection is
very different from the conditional expectation E[X | Y1, ..., Y, ] which provides
a much better approximation of X. We will however study a Gaussian setting
where the conditional expectation coincides with the best approximation by an affine
function. This has the enormous advantage of reducing calculations of conditional
expectations to projections in finite dimension.

Recall from Section 10.4.3 that a random variable Z = (Z1, ..., Z;) with values
in R¥ is a Gaussian vector if any linear combination of the components Z1, ..., Zj
is a Gaussian random variable, and this is equivalent to saying that Zy, ..., Zy are
in L% and

1
V& € RK , Elexp(i& - Z)] =exp (ig -E[Z] - ) ’SKZS), (11.6)

where we recall that Kz denotes the covariance function of Z. This property holds
in particular if Zy, ..., Z; are independent Gaussian real random variables.

Proposition 11.12 Let (X1,..., X, Y1, ..., Yn) be a Gaussian vector. Then the
vectors (X1, ..., X)) and (Y1, ..., Y,) are independent if and only if

cov(X;, Y;) =0, Vie{l,...,m}, je{l,...,n} (11.7)
Consequently, if (Z1,...,Zy) is a Gaussian vector whose covariance matrix is
diagonal, its components Z1, . .., Zj are independent.

Proof For the first assertion, we only need to prove that the condition (11.7)
implies the independence of (X1, ..., X;;) and (Y1, ..., Y,) (the converse is true by
Corollary 9.5). Forevery & = (11, ..., Nm, {1, - - ., {n) € R™T we have by (11.6),
]E[exp(lé : (X11 ce ey va Yls IR ] Yn))]
. 1
=exp(i& -E[(X1,..., X, Y1,..., )] — ) "EK (X, X Y1 Y E)-
Writing n = (91, ..., 0m) and ¢ = (&1, ..., &), we have
§-El(X1,.. s Xm, Y1, oo, Yl =0 E[(Xy, -, X1+ ¢ E[(Y1, -0, YD,

and, under the condition (11.7),

"EK Xy, X Y1, Y€ = K x,xon + K (v v €
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From the last two displays, it follows that

ElexpG & - (X1,.... Xm, Y1, ..., Y2))]
= Elexp(in - (X1, ..., Xn))] x E[exp( ¢ - (Y1, ..., Ya))],

or equivalently

Py X Y1 Yy 01 - ooy s S0y o5 S
=P . x0oom) Boyy vy (1, o5 Gn),

and the right-hand side is the Fourier transform of Py, . x,,) ® FBy,,....y,) evaluated
at(n1, ..., M, C1s - -+, &n). The injectivity of the Fourier transform (Theorem 8.16)
now gives

Pexy, X ¥i, ) = Fixy,ox) @ By, vy

which was the desired result.

The second assertion is a consequence of the first one, since we obtain first
that Z; is independent of (Zi,..., Zx—1), then that Z;_; is independent of
(Z1,...,Zk=2), ..., Z> is independent of Z;. This implies the independence of
Zi,..., 2. m|

Remark 1If the covariance matrix of a Gaussian vector (X1, ..., X,) is diagonal by
blocks of respective sizes iy, ..., ip (such thati; 4+ - -- + iy = n) the “sub-vectors”
X1, Xi))s Xiy+1s oo Xig4in)s -+ oo (Xij4gip_y+1, - - . » Xpp) are independent.
This immediately follows from the first assertion of the proposition.

A random vector (Z1, ..., Z,) is said to be centered if its components are in L!
and E[Z;] = O for every j € {1, ..., n}. For the sake of simplicity, we consider a
centered Gaussian vector in the following statement. The reader will be able to state
the similar result in the non-centered case.

Theorem 11.13 Let (Yy,...,Y,, X) be a centered Gaussian vector. Then E[X |
Y1, ..., Y] is equal to the orthogonal projection (in L?) of X on the vector space
spanned by Y1, ..., Y,. Hence there exist reals A1, ..., Ay such that

n
E[X|Y1..... Y\l =) ;Y]
j=1

Let 62 = E(X —E[X |Y1,..., Yn])2], and assume that o > 0. Then, for every
measurable function h : R — R,

E[h(X)|Y1,..., Y] = /Rh(x)qz:;:l 702 (0) dx, (11.8)
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where, for everym € R,

(x —m)?
202

1
Im.o2(X) = /2 exp( )

is the density of the Gaussian N'(m,o?) distribution, and the right-hand side
of (11.8) is the composition of the random variable Z?Zl Aj Y with the function

m> [ph(x)q, ,2(x)dx.

Remark We have 0 = 0 if and only if X = 27:1 AjYj as., and in that case
E[X|Y1,...,Yal =X and E[A(X) | Y1, ..., Yu] = h(X).

Proof Let X = 27}:1 A;Y; be the orthogonal projection of X on the vector space
spanned by Y1, ..., Y,. Then, for every j € {1,...,n},

cov(X — X, Y;) =E[(X — X)¥;] =0

by the definition of the orthogonal projection. Since (Y7,...,Y,, X — )?) is
a Gaussian vector (any linear combination of its components if also a linear
combination of Y7, ..., ¥, X), Proposition 11.12 shows that X — X is independent

of (Y1,...,Yy,). Therefore,
E[X|Y1,....Y, =E[X=X|Y;,....Y, ]+ X =E[X - X]+ X = X.

We used the fact that X is measurable with respect to o (Y1, ..., Y,), and then the
independence of X — X and (Y1, ...,7Y,), which, thanks to Theorem 11.8, implies
E[X — X|Y1,...,Y,] =E[X — X]=0.

For the last assertion, set Z = X — X , so that Z is independent of (Y1, ..., Y,)
and distributed according to A/(0, ) (by definition, 02 = E[Z?]). We then use
Theorem 11.9, which shows that

E[h(X)|Y]..... Y] =E[h(zn:)\jY,- +Z) ‘ Yi,..., Yn]
j=1

_ fh(zn:)\jyj +2) Pz(d2),
j=1

Writing Pz(dz) = ¢ ,2(z)dz and making the obvious change of variable, we arrive
at the stated formula. O
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11.5 Transition Probabilities and Conditional Distributions

The calculations made in Section 11.4 can be reformulated in a more convenient
manner thanks to the notion of a transition probability.

Definition 11.14 Let (E, &) and (F, F) be two measurable spaces. A transition
probability (or transition kernel) from E into F is a mapping

v:ExF—1[0,1]

which satisfies the following two properties:

(i) foreveryx € E, A+ v(x, A) is a probability measure on (F, F);
(ii) forevery A € F, the function x — v(x, A) is £-measurable.

At an intuitive level, each time one fixes a “starting point” x € E, the probability
measure v(x, -) gives a way to choose an “arrival point” y € F in a random manner
(but with a law depending on the starting point x). This notion plays a fundamental
role in the theory of Markov chains that we will study in Chapter 13.

Example Let u be a o-finite measure on (F, F),andlet f : E x F — R4 be an
&€ ® F-measurable function such that

/Ff(x,y)u(dy) =1, Vx € E.
Then
V(x,A)=/Af(x,y)M(dy)

defines a transition probability from E into F. In particular, property (ii) of the
definition follows from the Fubini theorem.

In part (i) of the following statement, ‘“nonnegative” means “with values in
[0, oo]”.

Proposition 11.15 Let v be a transition probability from E into F.

(1) If h is a nonnegative (resp. bounded) measurable function on (F, F), then

p(x) = / v(x,dy)h(y), x € E

is a nonnegative (resp. bounded) measurable function on E.
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(ii) Ify is a probability measure on (E, £), then

w(A) = / ydx)v(x,A), AeF

is a probability measure on (F, F).

We omit the easy proof of the proposition. When treating the nonnegative case
of (i), we first consider simple functions, and then use an increasing passage to the
limit.

We now come to the relation between the notion of a transition probability and
conditional expectations.

Definition 11.16 Let X and Y be two random variables taking values in (E, £) and
(F, F) respectively. Any transition probability v from E into F such that, for every
nonnegative measurable function 4 on F,

E[h(Y)|X] = f v(X,dy) h(y),  as.,

is called a conditional distribution of ¥ knowing X.

Remark The random variable f v(X, dy) h(y) is the composition of X with the
function x f v(x,dy) h(y), which is measurable by Proposition 11.15. In
particular, this random variable is a function of X, as E[2(Y) | X] should be.

By definition, if v is a conditional distribution of ¥ knowing X, we have, for
every A € F,

P(Y € A|X) = v(X, A), as.

It is tempting to replace this equality of random variables by an equality of real
numbers,

P(Y € A| X = x) = v(x, A),

for every x € E. Although it gives the intuition behind the notion of conditional
distribution, this last equality has no mathematical meaning in general, because one
has typically P(X = x) = 0 for every x € E, which makes it impossible to define
the conditional probability given the event {X = x}. The only rigorous formulation
is thus the first equality P(Y € A| X) = v(X, A).

Let us briefly discuss the uniqueness of the conditional distribution of ¥ knowing
X.If v and v’ are two such conditional distributions, we have, for every A € F,

V(X,A) =P € A|X) =V(X, A), as.
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which is equivalent to saying that, for every A € F,
v(x, A) =V'(x, A), Px(dx) a.s.

Suppose that the measurable space (F, F) is such that any probability measure on
(F, F) is characterized by its values on a (given) countable collection of measurable
sets (this property holds for (R?, B(R?)), by considering the collection of all
rectangles with rational coordinates). Then, we conclude from the preceding display
that

v(x,) =V'(x,-), Py(dx) as.

So uniqueness holds in this sense (and clearly we cannot expect more). By abuse of
language, we will nonetheless speak about the conditional distribution of ¥ knowing
X.

Let us now consider the problem of the existence of conditional distributions.

Theorem 11.17 Let X and Y be two random variables taking values in (E, )
and (F, F), respectively. Suppose that (F, F) is a complete separable metric space
equipped with its Borel o-field. Then, there exists a conditional distribution of Y
knowing X.

We will not prove this theorem, see Theorem 6.3 in [10] for the proof of a
more general statement. In what follows, we will not need Theorem 11.17, because
a direct construction allows one to avoid using the existence statement. As an
illustration, let us consider the examples treated in the preceding section.

(1) If X is a discrete variable (E is countable), then we may define v(x, A) by

vx,A)i=P(Y € A|X =x)ifx e E':={y e E:P(X = y) > 0}
V(x, A) = 8y, (A) ifx ¢ E'

where yg is an arbitrary fixed point of F'.
(2) Suppose that X and Y take values in R™ and in R” respectively, and that the
pair (X, Y) has density p(x, y), (x,y) € R™ x R". The density of X is then

q(x) =/ p(x, y)dy,
Rll

where we take g (x) = O if the integral is infinite. Proposition 11.11 shows that
we may define the conditional distribution of ¥ knowing X by

v(x, A) = : /p(x,y)dy if g(x) > 0,
q(x) Ja
v(x, A) = §p(A) if g(x) = 0.
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(3) Suppose that (X1, ..., X,, Y) is a centered Gaussian vector, and let
n
Y X
j=1

be the orthogonal projection in L2 of ¥ on the vector space spanned by
X1, ..., X,. Also set

o =E[(r - jz::l)\jxj)z],

and suppose that o > 0. Theorem 11.13 shows that the conditional distribution
of Y knowing X = (X1, ..., Xp) is

vt A) = [ a0y
[ ax

where g,, 2 is the density of N (m, c?). In a slightly abusive way, we say that,
conditionally on (X1, ..., X,), Y follows the Gaussian J\/(Z;’-zl riXj, a?)
distribution.

11.6 Exercises

Exercise 11.1 (Bayes Formula)

(1) Let (£2, A, P) be a probability space, and let (A1, Ay, ..., A,) be a measurable
partition of £2 such that P(A;) > O for every i € {l,...,n}. Prove that, for
every B € A such that P(B) > 0, foreveryi € {1, ..., n},

P(A)HP(B| A;
p(4; By = _ PADPEIAD
2 P(AHP(B|A))
(2) Suppose that we have n boxes numbered 1, 2, ..., n, and that the i-th box

contains r; red balls and n; black boxes, where r;, n; > 1. Imagine that one
chooses a box uniformly at random, and then picks a ball (again at random) in
the chosen box. Compute the probability that the i-th box was chosen knowing
that a red box was picked.

Exercise 11.2 Let X, ..., X,, be independent Bernoulli random variables with
parameter p € (0,1), and S, = X1 + --- + X,. Prove that, for every k €
{0, 1, ..., n}, the conditional distribution of (X1, ..., X,) knowing that S, = k
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(that is, the law of (X1, ..., X,) under P(- | S,, = k)) is the uniform distribution on
{(xls'-~7-x}’l) € {07 l}n S e e a7 :k}

Exercise 11.3 Let (X,),cN be a sequence of independent real random variables
unifomly distributed over [0, 1]. Define the record times of the sequence by 77 = 1
and, for every p > 2,

Ty, :=inf{n > Tp—1 : X, > XTp,l}

with the convention inf @ = oco. Show that P(T), < oo) = 1 for every p € N. Then
determine the law of 73, and prove that, for every p > 2 and k € N,

T, 1
Ellyr, =i | (T1, - .., Tp—1)] = Elly1,=1} | Tp—1] = Kk — 1) Y1, 1)

Exercise 11.4 Let B be a sub-o-field of A, and let X be a nonnegative real random
variable. Prove that the set

A = {E[X|B] > 0}

is the smallest B-measurable set containing {X > 0}, in the sense that:

. P({X > 0)\A) = 0;
e if B € Bissuchthat {X > 0} C B, then P(A\B) = 0.

Exercise 11.5 Let X and Y be two independent Gaussian N (0, 1) random vari-
ables. Compute

E[X | X2+ Y?].

Exercise 11.6 Let X be a d-dimensional Gaussian vector. Prove that the law Py of
X is absolutely continuous with respect to Lebesgue measure on R? if and only if
the covariance matrix K is invertible, and in that case the density of Py is

px) = Xp(—;’(x—m)Kgl(x—m)), xeRe,

1
e
(2m)4/2/det(K x)
where m = [E[X] and det(Kx) is the determinant of K.
Exercise 11.7 Let (A;),cn be a sequence of sub-o-fields of A, and let (X,),en be
a sequence of nonnegative random variables.

(1) Prove that the condition “E[X,, | A,] converges in probability to 0" implies that
X, converges in probability to 0.
(2) Show that the converse is false.
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Exercise 11.8 Let (A,),cn be a decreasing sequence of sub-o-fields of .4, with
Al = A, andlet X € L*(2, A, P).

(1) Prove that the random variables E[X | A,] — E[X | A,41], forn € N, are
orthogonal in L2, and that the series

> (BIX| Ayl — EIX | Ayp1])
neN

converges in L2.
(2) Let Aso = NyenAy. Prove that

Jim E[X|A] = E[X|Ax], in L.

Exercise 11.9 Let X and Y be to nonnegative random variables in L!. We assume
that we have both E[X | Y] = Y and E[Y | X] = X.

(1) Under the additional assumption that X € L?, prove that X =Y.
(2) We come back to the general case. Prove that, for every a > 0,

EX|X AalAha=X Aa.

(3) Verify that, for every a > 0, the pair (X A a,Y A a) satisfies the same
assumptions as the pair (X, Y), and conclude that X = Y. (Hint: Start by
verifying that E[X Aa|Y Aa]l <Y Aa).

Exercise 11.10 Let B be a sub-o-field of A, and let X and Y be two random
variables taking values in (£, £) and (F, F) respectively. We say that X and Y
are conditionally independent given B if, for any nonnegative measurable functions
f and g defined respectively on E and on F, we have

E[f(X)g(¥)|B] = ELf(X)|B]E[g(Y)|B].

(1) Discuss the special cases B = {&, 2} and B = A.

(2) Prove that X and Y are conditionally independent given B if and only if, for
any nonnegative B-measurable random variable Z and any functions f and g
as above,

E[f(X)g(Y)Z] = E[ f(X)Z E[g(Y)|B]],

and that this property is also equivalent to saying that, for any nonnegative
measurable function g on F,

ElgY) BV o(X)] =E[g(Y)|B].
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(3) We now assume that E = F = R, and that B = o¢(Z), where Z is a real
random variable. Furthermore, we assume that the random vector (X, Y, Z)
has a density which is positive on R3. Prove that X and Y are conditionally
independent given B if and only the density of (X, Y, Z) can be written in the
form

p(x,y,2) =q@)r(z, x) sz, y)
where ¢ is the density of Z and r, s are positive measurable functions on R?.

Exercise 11.11 Leta, b € (0, 00), and let (X, Y) be a random variable with values
in Z4+ x R4, whose distribution is characterized by the formula

P(X — . /’ (ay)"
X=nY=<t)=> o exp(—(a + b)y)dy,
O .

foreveryn € Z4 andt € Ry.

(1) Compute P(X = n) for every n € Z4, and then determine the conditional
distribution of ¥ knowing X. Compute E[ Xil 1.

(2) Compute the law of Y and then E[1{x—,) | Y]. Give the conditional distribution
of X knowing Y and compute E[X | Y].

Exercise 11.12 Let A > 0, and let X be a Gamma I (2, 1) random variable (with
density A2x e ™ on R.). Let Y be another real random variable, and assume that
the conditional distribution of ¥ knowing X is the uniform distribution over [0, X].
Prove that Y and X —Y are two independent exponential variables with parameter A.

Exercise 11.13 Let (E, £) and (F, F) be two measurable spaces, and let X and Y
be two random variables taking values in (E, £) and (F, F) respectively. Assume
that the conditional distribution of ¥ knowing X is the transition kernel v(x, dy).
Prove that, for any nonnegative measurable function 2 on (E X F,E ® F),

E[r(X,Y)|X] =/FU(X,dy)h(X, y)-

(Hint: Consider first the case where 1 = 144 p, with A € £ and B € F, and then
use a monotone class argument).



Part 111
Stochastic Processes



Chapter 12 )
Theory of Martingales Shethie

This chapter is devoted to the study of martingales, which form a very important
class of random processes. A (discrete-time) martingale is a sequence (Xp)nez,
of integrable real random variables such that, for every integer n, the conditional
expectation of X, 11 knowing Xy, ..., X, is equal to X,,. Intuitively, we may think
of the evolution of the fortune of a player in a fair game: the mean value of the
fortune at time n + 1 knowing what has happened until time 7 is equal to the fortune
at time n. Martingales play an important role in many developments of advanced
probability theory. We present here the basic convergence theorems for martingales.
As a special case of these theorems, if (Fy),ez, is an increasing sequence (or a
decreasing sequence) of sub-o-fields and Z is an integrable real random variable,
the conditional expectations E[Z | F,] converge a.s. and in L' as n — 0o0. We also
discuss optional stopping theorems, which roughly speaking say that no strategy of
the player can ensure a positive gain with probability one in a fair game. All these
results have important applications to other random processes, including random
walks and branching processes.

12.1 Definitions and Examples

We consider a probability space (§2, A, P). By definition, a (discrete-time) random
process is a sequence (X;),ez, of random variables defined on (£2, A, P) and
taking values in the same measurable space. In this chapter, all random processes
will take values in R.
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Definition 12.1 A filtration on (§2, A, P) is an increasing sequence (F,)uez, of
sub-o -fields of .A. We have thus

FoCcFiCcFhcC---CA

We also say that (£2, A, (Fu)nez. , P) is a filtered probability space.

The parameter n € Z is usually interpreted as time. The o-field F,, gathers the
information available at time n (events that are J,-measurable are interpreted as
those that depend only on what has happened up to time n). We will write

Fo=\ Fu=o( U F)

nely ne’ly

Examples

(a) If (Xn)nez, is arandom process, then, for every n € Z, we may define ]—',f‘ as
the smallest o-field on £2 for which X, X1, ..., X, are measurable:

FX =0(Xo, X1,..., Xp).

Then (]—",f( Jnez., is afiltration called the canonical filtration of (X,,),ez, -
(b) Suppose that £2 = [0, 1), A is the Borel o-field on [0, 1), and P is Lebesgue
measure. For every n € Z, set

o
Fa=o(l' ), )i €12, 2",

Then (Fy)nez, is afiltration called the dyadic filtration on [0, 1).

Definition 12.2 A random process (X,),ez, is said to be adapted to the filtration
(Finez, if, forevery n € Z, X, is F,,-measurable.

By definition, the canonical filtration of (X, ),ez, is the smallest filtration to
which the random process (X;)nez, is adapted.

Throughout the remaining part of this chapter (Section 12.7 excepted), we fix the
filtered probability space (£2, A, (Fu)nez, , P). The choice of this space, or only of
the filtration, will sometimes be made explicit in examples. The notions that we will
introduce, in particular in the next definition, are relative to this filtered probability
space.

Definition 12.3 Let (X,),ecz, be an adapted (real-valued) random process, such
that E[| X, |] < oo for every n € Z. We say that the process (X,,),ez, is:

* amartingale if, for every n € Z,,

ElXut1 1 Ful = X s
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* asupermartingale if, for every n € Z,
E[Xpt11Fnl = Xn s

* asubmartingale if, for every n € Z,
E[Xnt1[Fn]l = Xn .

An immediate consequence of the definition of a martingale is the (apparently
stronger) property: for every 0 < n < m,

This is easy to verify by induction on m — n. If m = n, (12.1) is trivial (since X,
is Fp-measurable), if m = n + 1, (12.1) is the definition of a martingale, and if
m —n > 2, Proposition 11.7 gives

E[Xp | Fn] = E[E[Xy | Fin-1]] Fn] = E[Xp—1] Fnl.

Notice that (12.1) implies E[X,,] = E[X}], and thus we have E[X,,] = E[X(] for
everyn € Zy.

Similarly, if (X,),ez, ) is a supermartingale (resp. a submartingale), we get, for
every) <n <m,

E[Xp | Fnl = Xn (resp. E[Xon | Ful = X0),

and thus E[X,,] < E[X,] (resp. E[X,,] > E[X,]). So, for a supermartingale, the
sequence (E[X,])nez, is decreasing, while it is increasing for a submartingale.

It is often useful to interpret a martingale as modelling the evolution of a fair
game: X, corresponds to the (possibly negative) fortune of the player at time n,
and F, is the information available at that time (including the outcomes of the
preceding games). The martingale property E[X,,+1 | F»] = X, reflects the fact
that the average value of the fortune at time n 4 1 knowing the past up to time n is
equal to the fortune at time n (on average, the player does not earn or lose money).
In the same way, a supermartingale corresponds to a disadvantageous game.

If (Xn)nez, is a supermartingale, then (—X;)necz, is a submartingale, and
conversely. For this reason, many of the results that are stated below for super-
martingales have an immediate analog for submartingales (and conversely).

Examples

(i) Let X € L'(£2, A, P). Forevery n € Z, set

X, = E[X | F.].
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(i)

(iii)

(iv)

12 Theory of Martingales

Then (X;)nez, is a martingale. Indeed Proposition 11.7 shows that
E[Xp41 | Fn] = E[E[X | Fug1]1 Ful = E[X | Fn]l = X,

A martingale of this type is called closed.
Let (Xn)nez, be a decreasing sequence of integrable random variables, and
assume that (X,),ez, is adapted. Then (X,),ez, is a supermartingale:

E[Xpy1]Fn] < E[Xn | Fal = X,.

Random walk on R. Let x € R and let (¥,),en be a sequence of independent
and identically distributed real random variables with distribution w, such that
E[lY1]] < oo. Set

Xo=xand X, =x+Y1+ Vo +...+Y,ifn>1.
Also define the filtration (F;),cz, on §2 by
Fo=1{2,2} and F, =0(Y1,..., Yy ifn>1

(this is the canonical filtration of (X;)nez, ). Then (X;)pez, is

* amartingale if E[Y;] = 0;
e asupermartingale if E[Y]] < 0;
e asubmartingale if E[Y;] > 0.

Indeed, considering for instance the case E[Y]] = 0, we have
E[Xn+1 |]:n] = E[Xn + Yn+1 |]:n] =X, + E[YnJrl] = Xy,

since by construction Y,,4 is independent of F,,, and we use Theorem 11.8.
We say that (X,)nez, is a random walk on R started at x with jump
distribution p. In the special case where (1) = u(—1) = 1/2 and x € Z,
we call (Xp)nez, simple random walk on Z (this is the coin-tossing process
already considered in Proposition 10.7).
Consider the example (b) of a filtered probability space given above. Let i be
a finite measure on [0, 1), and recall that P = X is Lebesgue measure on [0, 1)
in this example. For every integer n € Z, set

du

fn = da ‘]__na

which denotes the Radon-Nikodym density of p with respect to A, when both
u and A are viewed as measures on the o-field F,, (notice that, on the o-field
Fu, all measures are absolutely continuous with respect to A!). It is easy to
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verify that f, is given by

on

i — 12", 2"
fulwy = 30O 2),,1 2 (@, Yo e0,1),
i=1

Then, (fu)nez, is a martingale. Indeed, if A € JF;,, we have

E14 fu1]= / 14(@) fpy1(@)do = pn(A) = / 14 (@) fn(@) dw = E[14 fn],

and, recalling the characteristic property of conditional expectations, this
implies that f,, = E[ f,+1 | Fnl.

In the special case where p is absolutely continuous with respect to A (on
the o-field A), the martingale (f,),ez, is closed, in the sense explained in
example (i). Indeed, one checks by the same argument as above that

fn = ELf | Fuls (12.2)
where f is the Radon-Nikodym density of u with respect to A.

Two Martingale Transforms
Proposition 12.4 Let ¢ : R —> R be a convex function, and let (X,)nez., be an
adapted process, such that E[¢(X,)] < oo for everyn € Z.

() If Xu)nez, is a martingale, (9(Xy))nez, is a submartingale.
(i) If (Xnlnez, is a submartingale, and if we assume in addition that ¢ is
increasing, (¢(Xn))nez., is a submartingale.

In particular, if X, is a martingale, |X,| is a submartingale (and so is X,2l,
provided that E[X,zl] < oo for every n) and, if X,, is a submartingale, (X,)" is
also a submartingale.

Proof

(i) By Jensen’s inequality for conditional expectations,

Elgp(Xnt1) | Ful = @(E[Xn+1]Ful) = @(Xn).
(i) Similary, since X,, < E[X,+1|F] and ¢ is increasing,

Ele(Xn+1) | Ful = @(E[Xn11 ] Fal) = @(Xn).
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Definition 12.5 A sequence (H,),cn of real random variables is called predictable
if H, is bounded and F;,_1-measurable, for every n € N.

Proposition 12.6 Let (X)uez, be an adapted process, and let (Hp)uen be a
predictable sequence. We set (H o X)o = 0 and, for every integern > 1,

(HeX), =H (X1 —Xo) +H(X2 — X))+ -+ Hy (X, — Xp—1).

Then,

() If Xn)nez, is a martingale, (H ® X),)nez, is also a martingale.
(i) If (Xn)nez., is a supermartingale (resp. a submartingale), and H, > 0 for every
n € N, then ((H ® X)y)nez, is a supermartingale (resp. a submartingale).

Proof Let us prove (i). Since the random variables H, are bounded, one imme-
diately checks that the random variables (H e X), are integrable. It is also
straightforward to verify that the process ((H o X),),ez, is adapted (all random
variables entering the definition of (H e X), are JF,-measurable). Then it suffices to
verify that, for everyn € Z,

E[(H © X)nt1 — (H  X), | Fn] = 0.

However, (H  X),+1 — (H o X), = Hy+1(Xn4+1 — X5) and since Hy4 is Fy-
measurable, Proposition 11.6 shows that

E[Hn+l(Xn+l - Xn) |]:n] = Hn+l IE[Xn+l - X, |]:n]
= n+l(E[Xn+l |]:n] - Xn) =0.

The proof of (ii) is similar. |

Recall our interpretation of a martingale X,, as the fortune of the player at time
n in a fair game. The difference X, +1 — X;, is then the gain obtained by the player
between time n and time n 4 1. We can imagine that, at time n, the player decides
to change his stake by multiplying it by the factor H,4; (which has to be F,-
measurable, since the player only knows what has happened up to time n). Then
the new gain obtained between time #n and time n + 1 will be H,+1(Xp+1 — Xn)
and this will still correspond to a fair game. The preceding lines give an intuitive
explanation of the definition of H e X.
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12.2 Stopping Times

Definition 12.7 A random variable T : 2 — Z, = Z4 U {+o00} is called a
stopping time (of the filtration (F,),ez, ) if, for every integer n € Z,, one has

{T =n} e Fy.

This is equivalent to saying that, for every n € Z,, one has {T < n} € F,.

The equivalence between the two forms of the definition is very easy and left to
the reader as an exercise.
It is important to note that the value T = 400 is allowed. By writing

{T =+oc} =0\ [ J{T =n)

VLEZ+

we see that {T = 400} € Fuo.

Back to our game-theoretic interpretation, one may imagine that the player
decides to leave the game at a random time (depending on the evolution of his
fortune). This random time has to be a stopping time: for the player to decide to
leave the game at time 7, the only information available is the past up to this time
(the player has no information about future events). Similarly, on the stock market,
one can decide to sell shares from the knowledge of the evolution of prices up to the
current time, but their future evolution is in principle unknown!

Examples

(i) Letk € Z4. The constant time T = k is obviously a stopping time.
(ii) Let (Y;)nez, be an adapted process, and let A € B(R). Set

Ty =inflneZ, :Y, € A}

with the convention inf @ = +o0 (this convention will be made systematically
in what follows). Then T4 is a stopping time. Indeed, for every n € Z,

(Ta=n}={Yo¢ A, Y1 ¢A,....Yy1 ¢ A, Y, cA)eFp.

We call Ty the first hitting time of A (by the process (Yu)nez, )-
(iii)) Under the same assumptions as in (ii), if we fix N € N and set

Ly :=sup{fn <N:Y,e€A} (sup@=0 byconvention),

L 4 is usually not a stopping time. Indeed, for every n € {1,..., N — 1}, the
event

(La=n}={Y, €A, Y1 A, ... Yy¢&A)
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is a priori not in JF,, since this event involves the random variables
Yu+1, ..., Yn, which need not be F;,-measurable.

Definition 12.8 Let T be a stopping time. The o-field of the past up to time T is
defined by

Fri={A e Feo:Vn € Zy, AN{T =n} e F,},
or, equivalently,
Fr={Ae F:VneZy, AN{T <n} e F},

We leave the fact that Fr is a o-field and the equivalence of the two forms of
the definition as an exercise for the reader. Our notation is consistent in the sense
that Fr = F, if T is the constant stopping time equal to n. Note that the random
variable T is Fr-measurable: for every k € Zy, {T = k} N {T = n} is empty if
n # k and is equal to {T = n} € F, if n = k, proving that {T = k} € Fr.

Proposition 12.9 Ler S and T be two stopping times such that S < T. Then, Fs C
Fr.

Proof Let A € Fgs. Then, foreveryn € Z,

AN{T =n}=JAN{S=kHN(T =n} e F,.
k=0

O

Proposition 12.10 Let S and T be two stopping times. Then, S AT and SV T are
also stopping times. Moreover Fsat = Fs N Fr.

Proof For the first assertion, we write {S AT < n} = {S < n} U{T < n} and
similarly {S VT < n}={S <n}N{T < n}. Then, the fact that Fs.7 C Fs N Fr
follows from Proposition 12.9. Conversely,if A € Fs N Fr,wehave AN{SAT <
n}=AN{S <nhUAN{T <n}) € F, forevery n, so that A € Fsar. a

The next proposition shows that the evaluation of a random process at a stopping
time 7' gives an Fr-measurable random variable (this will play an important role in
the stopping theorems that are discussed below). A minor technical difficulty occurs
because the evaluation at 7 makes sense only when 7 < oo. For this reason, it is
convenient to use a notion of measurability for a real function Z which is defined
only on a measurable subset A of £2: if G is a sub-o-field of A such that A € G,
we (obviously) say that Z is G-measurable if and only if Z~!(B) € G for every
B € B(R), as in the usual definition.
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Proposition 12.11 Let (Yy)ncz, be an adapted process, and let T be a stopping
time. Then the random variable Yr, which is defined on the event {T < oo} by
Y7 (0) = Y1 (o) (@), is Fr-measurable.

Proof Let B be a Borel subset of R. Then, for everyn € Z,
{Yr e BYN{T =n} ={Y, € B}N{T =n} € Fy,

which shows that {Yr € B} € Fr. O

If T is a stopping time, then, for every n € Z4, n A T is also a stopping time
(Lemma 12.10) and it follows from the preceding proposition that Yo7 iS FuaT-
measurable, hence also J,-measurable by Proposition 12.9.

Theorem 12.12 (Optional stopping theorem, first version) Suppose that
(Xn)nez, is a martingale (resp. a supermartingale) and let T be a stopping time.
Then (Xun1)nez, is also a martingale (resp. a supermartingale). In particular, if
the stopping time T is bounded, one has Xt € L', and

E[Xr] = E[X0] (resp. E[XT] < E[X0]).
Proof Foreveryn > 1, set
Hy =175 =1~ 1{7<41).

Then the sequence (H,),>1 is predictable, since {T < n — 1} € F,_1 by the
definition of a stopping time. Moreover, for every n € Z,,

nAT n
Xunr = X0+ Z(Xi —Xi—1) =Xo+ Zl{Tzi}(Xi —Xi—1) =Xo+ (H e X),.
i=1 i=1

The first assertion of the theorem then follows from Proposition 12.6 (it is obvious
that adding an integrable Fp-measurable random variable to a martingale, resp. to a
supermartingale, yields again a martingale, resp. a supermartingale).

If the stopping time 7T is bounded above by the constant N, X7 = Xyar is
in L', and E[X7] = E[XyAar] = E[Xo0] (resp. E[X7] < E[Xo] in the case of a
supermartingale). O

In the last assertion of the theorem, the assumption that 7 is bounded cannot
be omitted, as shown by the following simple example. Consider a simple random
walk (X;)nez, started from 0. Then X,, = Y| +- - -+, where the random variables
Y1, Ya, ... are independent withe the same distribution P(Y; = 1) =P(Y; = —1) =
1/2. Since E[Y1] = 0, we know that (X, ),ez, is a martingale. Then,

T=inf{n>0:X,=1}
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is a stopping time, and we have T < oo a.s. as a consequence of Proposition 10.7
(we will later provide alternative proofs of this fact). However,

I =E[X7] # E[X0] = 0.

Since the stopping time 7 is not bounded, this does not contradict Theorem 12.12.

12.3 Almost Sure Convergence of Martingales

Our goal is now to study the almost sure convergence of a martingale or a
supermartingale when n — oo. Consider first a deterministic real sequence o =
(@n)nez, - Fix two reals a < b and define two increasing sequences (Sk(@))kez,

and (Ty(a))kez, in Z4 inductively as follows:
Si(@) :=inf{n >0 : o, < a}

Ti(x) :=inf{n > Si(a) : a, > b}
and then, for every k > 1,
Skv1(@) :=inf{n > Ty (@) : oy < a}
Tir1(@) = inf{n > Spr1(@) : oy > b).

The convention inf @ = 400 is used in these definitions. We then set, for every
integer n > 0,

o
Ny(la.b). o) = supfk = 1 : Te(@) < n} =Y L7(a)=n)-
k=1

o0
Noo(la, b]. &) = sup{k > 1 : Te(@) < 00} = Y 17, (@)<c0)-
k=1

where sup @ = 0. The quantity N ([a, b], ) is the total upcrossing number along
[a, b] for the sequence (a;)nez, - We will use the following simple analytic lemma,
whose proof is left to the reader.

Lemma 12.13 The sequence (an)nez, converges in R if and only if, for every
choice of the rationals a and b with a < b, we have N ([a, b], o) < oo.

Note that we do not exclude the possibility o, —> +00 or oy —> —00.

Let us replace the sequence (a)uez, by a random process X = (Xu)nez,,
assuming that this process is adapted to the filtration (F,),cz,. The previous
definitions then apply to define the quantities Sk (X), T (X), for every k > 0, and
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these quantities are now random. More precisely, we observe that Sy (X) and Ty (X)
are stopping times, for every k > 0. Indeed, we can write

{Tk(X) =< n}

= U {XmlfaaanZba---,kafaaXnkZb}a

0<mi<ni<--<mp<nip<n

which implies that {7} (X) < n} € F,, and a similar argument shows that {S; (X) <
n} € Fu.

As a consequence, we get that N,([a,b], X) = Z,fil L1 ()<ny 18 Fa-
measurable.

Lemma 12.14 (Doob’s Upcrossing Inequality) Let X = (X,)uez, be a sub-
martingale. Then, for every reals a < b and everyn € Z.,

(b — a) E[Ny([a, b], X)] < E[(X, —a)" — (Xo —a)"].

Proof Fix a < b and, to simplify notation, set N, = N, ([a, b], X), and also
write Sk, Ty instead of Sk (X), Tx(X). We define a nonnegative predictable sequence
(Hp)nen by setting, for every n € N,

o0
H, = Zl{Sk<n§Tk} <1
k=1

To verify that this sequence is predictable, we note that the event
Sk <n =T} =S =n—1\{Thk =<n—1}

belongs to F,,—1, because both S and T} are stopping times.
Next set ¥, = (X,, —a)™ for every n € Z, . By Proposition 12.4, (Ynez, is a
submartingale. Then, we observe that

Ny
(HoY)y=Y (Y5, — Y5,) + L5y, 1 <m (Yu — Y5y, 1)

=~
—

n

Mz

Y7, — Ys,)

»
I

1
> Nu(b — a).

The first inequality holds because Y5, ., = 0 on the event {Sy,+1 < oo} (on this
event, we have Xsy,o1 < a), and Y, > 0. We get in particular

E[(H o Y)n] = (b — a) E[N,].
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On the other hand, if K, = 1 — Hy, (Ky)nez, is also a nonnegative predictable
sequence, and Proposition 12.6 implies that (K e Y), is a submartingale, hence
E[(K o Y),] = E[(K @ Y)o] = 0.

We finally observe that

(KeY), +(HeY),=(K+H)eY), =Y, Yo,
and thus
(b—a)E[N,] <E[(H eY),] <E[(K oY), + (H eY),] =E[Y, — Yol
which is the desired inequality. O

Theorem 12.15 Let (X,)ncz, be a submartingale or a supermartingale bounded
in L', i.e. such that

sup E[[X,]] < oc. (12.3)

VLEZ+

Then the sequence (Xy)nez, converges almost surely as n — oo. Furthermore, its
limit X oo satisfies E[| X o|] < 00.

Proof 1t is enough to treat the case of a submartingale. Let a, b € Q such that

a < b.By Lemma 12.14, we have, for every n > 1,

(b —a) E[Ny(la, b], X)] < E[(X, —a) "] < |al + E[(X) "] < Ial+ksuZp E[] X l].
€Lt

By letting n — 400, and using (12.3), we get
(b —a) E[No([a, b], X)] < 00

and thus N ([a, b], X) < oo a.s. Up to discarding a countable union of events
of zero probability, we obtain that, almost surely, for every rationals a < b,
N ([a, b], X) < oo. By Lemma 12.13, this is enough to get that X,, converges
almost surely in R.

Then, thanks to Fatou’s lemma, we have

E[lXool] = liminf E[|X,[] < sup E[|X,|] < o0
n— 00 neZy

and in particular | X | < 00 a.s. |

We note that a nonnegative supermartingale is always bounded in L' since
E[X,] < E[Xy] for every n > 0.
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Corollary 12.16 Let (X;)ncz, be a nonnegative supermartingale. Then, X, con-
verges a.s. as n — 00. Its limit Xoo is in L' and we have X, > E[Xoo | Ful for
everyn € Z.

Proof This follows from Theorem 12.15, as explained before the statement of the
corollary, except for the last assertion, which is a consequence of Fatou’s lemma for
conditional expectations (property (e) in Section 11.2.2):

X, > iminfE[X,, | F,] > E[liminf X,, | F] = E[X oo | Ful.
m—00 m—00

Examples

(1) Let (Yn)nez, be asimple random walk on Z started from Yy = 1. We have seen
that (Y;,),ez, is a martingale with respect to its canonical filtration. Set

T =inf{n > 0: Y, = 0}.

Then T is a stopping time, and Theorem 12.12 implies that X,, = Y,a7 is
a nonnegative martingale, to which we can apply Corollary 12.16. Hence X,
converges a.s. to a limiting random variable X, such that X, < co. However,
on the event {T = oo}, we have | X, 11 — X,| = [Yuy1 — Yu| = 1 for every
n, which makes it impossible for the sequence X, to converge. It follows that
T < oo a.s. (this is the property we used in the example following the proof of
Theorem 12.12). Also note that we have Xo, = 0 a.s. and thus the inequality
Xn > E[Xoo | F] = 01is not an equality despite the fact that (Xy),ez, is a
martingale.

This example also shows that the convergences of Theorem 12.15 or
Corollary 12.16 do not necessarily hold in L'. Indeed, we have here E[X,,] = 1
for every n since X is a martingale, but E[X ] = 0.

(2) Branching processes. Let i be a probability measure on Z, such that

o
m = Zku(k) < 00.
k=0

To avoid trivialities, we exclude the cases u = 81 and u = §g.

Thenlet (§,, j)nez, , jeN be a collection of independent identically distributed
random variables with law p. Also fix an integer £ > 1. We define a sequence
(Zn)nez, of random variables with values in Z, by induction, by setting

Zo=1¢

le
Znpi =) Enj. Vnel.
j=1
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In particular, Z,,41 = 0if Z, = 0. We interpret Z,, as the number of individuals
at generation n in a population that evolves according to the following rules. The
initial size of the population if ¢, and then, at every generation, each individual
has a random number of offspring distributed according to © (and these
numbers are independent for all individuals). The random process (Z,)nez,
is called the Galton-Watson process with offspring distribution p (and initial
size £).

We claim that m™"Z, is a nonnegative martingale with respect to the
filtration

Fo=1{2, 2}
Fo=o, ke{0,1,....n—1},jeN), ifn>1.

The random process (Z;) is adapted with respect to this filtration, because the
definition of Z; only involves the random variables & ; for indices k such that
k < n. Furthermore, for every n > 0,

oo oo
ELZo1 | Fad = B[ Y Wzz 60 | Fa ] = D2 V<20 Bl | Fal = m Z,
j=1 j=1

since &, ; is independent of F,, and thus E[&, ; | F,] = E[§, ;] = m.
Consequently,

Efm= "tV Z, | Fl=m™"Z,.

This implies ]E[m’("“)ZnH] = E[m™"Z,], and by induction we immediately
get E[Z,] = €m", showing that the random variables Z,, are in L. Then the
last display exactly gives the martingale property of the process (m ™" Z,)nez, .

By Corollary 12.16, we get that m~" Z,, converges a.s. to a finite limit Z as
n — oo. Let us distinguish three cases:

e m < 1. Since Z, is integer-valued, the convergence of m~"Z, is only
possible if Z, = 0 for every sufficiently large n (this means that the
population becomes extinct a.s.).

e m = 1. In that case, Z, is a nonnegative martingale and we can prove that
the extinction of the population again occurs a.s. To verify this, since we
know that Z, converges a.s. as n — 0o, we have to exclude the possibility
that Z, = p for every sufficiently large n, for some integer p > 1. Put
differently, we have to check that, for every p > 1,

P@EAN > 1:Yn > N, Z, = p) = 0.

This is obtained by a straightforward application of the Borel-Cantelli lemma
(recall that we excluded . = &1, so that u(1) < 1).
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e m > 1. We have

mz, &% 7 (12.4)
n—o0
so that, on the event {Z > 0}, we see that the population size Z, grows like
m™ when n is large. Note that, if ©£(0) > 0, the event of extinction of the
population still has positive probability. Two natural questions are then:

— Dowehave P(Z > 0) > 07?
— Do we have Z > 0 a.s. on the non-extinction event (),..o{Z, > 0} ?

A classical result known as the Kesten-Stigum theorem shows that the
answer to both questions is yes if

>k log(k) (k) < oo,
k=1

and moreover the convergence (12.4) holds in L! under this condition. We
will prove a weaker result in Section 12.4 below.

Let (X;)nez, be a martingale. If the sequence (X,),ez, is bounded in L,
Theorem 12.15 shows that X, converges a.s. as n — 0o. We have seen that this
convergence does not always hold in L'. The next theorem characterizes those
martingales for which the L'-convergence holds.

Theorem 12.17 Let (X,)nez, be a martingale. The following two conditions are
equivalent:

(i) X, converges a.s. and in L' t0 a random variable denoted by Xoo.
(ii) The martingale (Xy)nez, is closed, in the sense that there exists a random
variable Z € LI(Q, A, P) such that X, = E[Z | F,,] for everyn € Z.

Moreover, if these conditions hold, we can take Z = X« in (ii).

Proof Assume first that (i) holds. For integers 0 < n < m, we have
Xn = E[Xm |]:n]

The mapping ¥ —> E[Y | F,] is continuous from L! into L! (it is even a
contraction of L! since E[E[Y | 4111 < E[|Y]|]). Therefore, by letting m — oo
in the last display, we get X,, = E[ X | Fr]-

Conversely, assume that (ii) holds. Then the sequence (X,) ez, is bounded in L!
and thus converges a.s. by Theorem 12.15. Consider first the case where the random
variable |Z| is bounded by a constant K < oo. Then we have also | X,| < K for
every n, and the dominated convergence theorem gives E[| X,, — Xoo|] —> 0. In the
general case, fix ¢ > 0, and choose M > 0 large enough so that

E[Z — Zl{\Z|§M}|] < E.
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(note that E[|Z| 1{jz|>m}] —> 0 as M — oo by dominated convergence). Then,
for every n,
El1Xn — E[Z 1z|<my| Fulll = E[|E[Z — Z 1(jz<my | Fall]
<ElZ - Z1jz1=m]
<e.

From the bounded case, the martingale E[Z 1{,7/<um; | Fu] converges in L'. Hence,
we can choose ng large enough so that, for every m, n > ny,

E[E[Z 1z |<my | Fm] — E[Z Yy z)<pry | Fulll < €.
By combining this with the preceding display, we get, for every m, n > no,
El|Xm — Xnl] < 3e.

Since ¢ was arbitrary, we have obtained that the sequence (X;),cz, is Cauchy in
L!, and thus converges in Ll m]

o0 o0
Recall that Fog = \/ F = a( U }'n).
n=1 n=1

Corollary 12.18 Let Z € L! (82, A, P). The martingale X,, = E[Z | F,,] converges
a.s.and in L' to Xoo = E[Z | Feol.

Proof From the preceding theorem, we already know that X, converges a.s. and in
L! to a random variable denoted by X . It remains to prove that X oo = E[Z | Fol.
We first note that X iS Foo-measurable as a limit of F,,-measurable random
variables. Then, for every n € Z; and A € F,, the characteristic property of
conditional expectation gives

E[Z14] =E[X, 14].

By letting n — o0, and using the L'-convergence, we get E[Z14] = E[Xs 14].
A monotone class argument (Theorem 1.18) shows that the equality E[Z14] =
E[X oo 14], which holds for A € |2 F,, remains valid for A € o (oo, Fn) =
F. The characteristic property of conditional expectation then gives the desired
result. O

Example Consider example (iv) in Section 12.1: 2 = [0, 1), A = B([0, 1)) is the

Borel o-field on [0, 1), and P = A is Lebesgue measure. The dyadic filtration is
defined by

i—1 i
7 :=a<[ ” ,2n):ze{1,2,...,2"}>.
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Let u be a finite measure on [0, 1), and, for every integer n € Z.,

on

3 p([G —1D27",027"))

f@) = @)= .

1 P —n ;7y—nmy ().
a7, [i—1)2-,i2-m) (@)

i=1

We already noticed that (f;)nez, is a nonnegative martingale, and thus (Corol-
lary 12.16),

where f foodX < oo. Moreover f;, > E[fsx | Fn], which shows that, for every
AeFy,

M(A)=/fn1Ad)»Z /E[foolfn]IAd)»=/foo1A da.

Recall our notation f, - A for the measure with density fo, with respect to A. By
the preceding display, we have u(A) > foo - A (A) for every A € U™ F,. This
implies that £ (0) > fo - A (O) for every open subset O of [0, 1) (every such set
is a disjoint union of at most countably many sets in US2 ;7). Furthermore, the
regularity properties of finite measures on [0, 1) (Proposition 3.10) imply that, for
every Borel subset A of [0, 1), u(A) = inf{u(O) : O open, A C O} and it readily
follows that the inequality «(A) > foo - A (A) holds for every A € B([0, 1)). We
canthen set v = i — foo - A, and v is a finite (positive) measure on [0, 1).

Let us show that v is singular with respect to A. For every n > 0, set

dv

h, =
T dhE,

= fo = Elfoo [ Fnl,

using (12.2) in the second equality. We now use Corollaire 12.18. In the special
case we are considering, we have Fo, = A and thus we get E[ foo | F1] —> foo @.8.
Consequently 4, —> 0 a.s. and

A(’x € [0, 1) : lim sup hin (x) > o}) —0. (12.5)

n—oo

On the other hand, for every ¢ > 0,andn € Z,

v({x € [0, 1) 1 hy(x) < &}) = / L, <eyhn dr < ¢,
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which implies

v(’x € [0, 1) : limsup hn (x) < s}) < v( G ﬁ {hy < g})

n—oo

N=1n=N
oo
= Jm ()t =e)

‘We have thus obtained

v({x €10, 1) : lim sup fin (x) = 0}) =0

n—o0
and comparing with (12.5) we see that A and v are supported on disjoint sets.

From the preceding considerations, we see that © = foo - A + v is the
decomposition of the measure p as the sum of a measure absolutely continuous
with respect to A and a singular measure. We have thus recovered a special case of
the Radon-Nikodym theorem (Theorem 4.11). Note that w is absolutely continuous
with respect to A if and only if v = 0, which holds if and only if the martingale
(fu)nez, is closed.

12.4 Convergence in L? When p > 1

Our goal is now to study which conditions ensure that a martingale converges in
L? when p > 1. The arguments will depend on some important estimates for the
distribution of the maximal value of a martingale. We start with a simple lemma.

Lemma 12.19 Let (X;),ez, be a submartingale, and let S and T be two bounded
stopping times such that S < T. Then

E[Xs] < E[XT].

Remark The case S = 0 is contained in Theorem 12.12.

Proof We already know that X s and X7 arein L. We define a predictable sequence
by setting, for every n > 1,

Hy = 1s<n<ty = Lis<n—1) — LiT<n—1}-
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Let N be an integer such that S < T < N. Then, with the notation of
Proposition 12.6,

(HeX)y = X7 — X5
and E[(H e X)x] > Osince H e X is a submartingale (Proposition 12.6). |

Theorem 12.20 (Doob’s maximal inequality) Let (X,) ez, be a submartingale.
Then, for every a > 0 and everyn € Z.,

aIP’( sup Xy > a) < ]E[Xn T sza}] < E[X]].

0<k=<n
Similarly, if (Yn)nez, is a supermartingale, then, for everya > O and everyn € Z.,

aIP’( sup Vi > a) < E[Yo] + E[Y, 1.

0<k=n
Proof Let us prove the first assertion. Consider the stopping time
T =inf{k > 0: Xy > a}.
Then, if

A:{ sup XkZa},

0<k<n

we have A = {T < n}. On the other hand, by applying the preceding lemma to the
stopping times 7' A n and n, we have

E[X71an] < E[Xp].
Furthermore,
Xran =z alg+ Xy 1pe.
By combining these two inequalities, we get
E[Xp] = alP(A) + E[X, 14¢]

and it follows that alP(A) < E[X,, 14], which gives the first part of the theorem.
The proof of the second part is very similar. We introduce the stopping time

R=inflk>0:Y >al,
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and the event B = {R < n}. We have then E[YzA,] < E[Yy], and E[YgAn] >
alP(B) 4+ E[Y;, 15c]. It follows that alP(B) < E[Yy] — E[Y,, 15<], which leads to the
desired result. |

Proposition 12.21 Let p € (1, 00) and let (Xy)nez, be a nonnegative submartin-
gale. For everyn € Z., set

)?n = sup Xi.

0<k<n
Then,

p

BN = ()7

)" Blx)n.

Consequently, if (Yn)nez, is a martingale, and

Yy = sup |V

0<k<n
we have, for everyn € Z.,

p

p
") EuTI)

B0 < (

Remark 1In the first part of the proposition, we do not exclude the possibility that
E[(X,)?] = oo, in which case the bound of the proposition reduces to co < co. A
similar remark applies to the second part.

Proof The second part of the proposition follows from the first part applied to the
submartingale X, = |Y,|. In order to prove the first part, we may assume that
E[(X,)P] < oo. Then, by Jensen’s inequality for conditional expectations, we have,
forevery 0 < k < n,

E[(X0)?] < E[E[X, | Fi]?] < E[E[(X)” | Fall = E[(Xn)"]. (12.6)

Since in < Xo + -- -+ X,, it follows that we have also E[(f(,,)”] < 00.
By Theorem 12.20, for every a > 0,

aP(Xy = a) <E[X, 1z, -0

We multiply each side of this inequality by a”~2 and integrate with respect to
Lebesgue measure on (0, 0o). For the left side, we get

0 ~ )?n 1 ~
/ a?'P(X, > a)da = IE[/ apflda:l = E[(X.)"]
0 0 p
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using the Fubini theorem. Similarly, we get for the right side

oo in
[ a1 5, e = B[, [ 072a]

! 1IE[xno’?n)P—ll

1 ~ p-
R CALL TALNS

IA

by the Holder inequality. We thus get

p—1

1~ 1 -
E[(X)P] < E[(Xn)”];E[(Xn)”] »
p p—1

giving the first part of the proposition (we use the fact that E[(f( P < 00). |

If (X,)nez, is a random process, we set X3 = sup |X,]|.
nEZ+

Theorem 12.22 Let (X;,)nez, be a martingale and p € (1, 00). Suppose that

sup E[|X,|7] < oo,

nEZ+
Then, X, converges a.s. and in L? to a random variable X o such that

E[|Xoo|”]= sup E[|Xp|"]

n€Z+

and we have
* P NP
Bl = (7)) Xl

Proof Since the martingale (X,,) is bounded in L7, it is also bounded in L' and
we know from Theorem 12.15 that X,, converges a.s. to a limiting random variable
X 0. Moreover, Proposition 12.21 shows that, for every n € Z,

o= (7 )" sup BlIx)
p—1 ez,

Since X + X%, when n 1 oo, the monotone convergence theorem gives

Bl = (P )" sup BIIXW” < o0
p—1 ez,
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and thus X} € L?. Since all random variables | X, |” are dominated by | X7 |7, the
dominated convergence theorem ensures that X, converges to X, in L?. Finally,
we know from (12.6) that the sequence E[| X,,|”] is increasing, and therefore

E[[Xool"] = lim E[1X,|"] = sup E[|X,|"].

nEZ+

O

Example Let (Z,)nez, be the Galton-Watson branching process with offspring
distribution p and initial population £ > 1 considered in the previous section. We
now assume that

m:Zku(k)e(l,oo)

k=0

and

Z K2 (k) < oo.

k=0

We also set 02 = var(p) = 3 kzu(k)) — m?%. We have already observed that
m~"Z, is a martingale. We claim that, under the preceding assumptions, this
martingale is bounded in L. To verify this property, we compute

EIZy 1) =E[ Y Vy<zhezitbojbnk | Fa

0
k=1

J

o
Z Vj<z,k<z,) Elén, j6n k]
Jj.k=1

o0
Y Vjzz,k=z,) (m* + 071 (i)
jik=1

= mZZS +0%2Z,.
Since we know that E[Z,,] = m"E[Zy] = £ m", it follows that
E(Z2,,] = m*E[Z2] + to’m".
Setting a, = m’z"]E[Z,zl], we get

A+l = ay + 0o2m "2
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and, since m > 1, the sequence (a,)ncz, converges to a finite limit, and in particular
this sequence is bounded. Consequently, we have obtained that the martingale
m~"Z, is bounded in L?. By Theorem 12.22, this martingale converges a.s. and
in L? to a random variable Zn,. In particular, E[Z,] = E[Zy] = ¢ and therefore
P(Zs > 0) > 0 (it is not difficult to see that we have Z,, > 0 a.s. on the event of
non-extinction, but we omit the details).

We conclude this section with an important application to series of independent
random variables.

Theorem 12.23 Let (X,)ncz, be a sequence of independent real random variables
in L?. Assume that E[X,,] = O for every n € Z.. Then the following two conditions
are equivalent:

() > E[(X.)?] < oo.
n=0

o
(i1) The series Z X, converges a.s. and in L2
n=0

Proof For every integer n > 0, set F,, = o (Xo, X1, ..., X,,) and

n
My =Y X
k=0

Since
M1 Fol = ZXkJrE X1 —Zxk,

(My)nez, is amartingale with respect to the filtration (F;),ez, . Furthermore, since
E[X;X] = 0if j # k, one has

E[(My)*] = ) _EI(Xx)*].

k=0

Hence, if M), converges in L? as n — oo, condition (i) of the theorem must hold
(we have just recovered a special case of a classical result of Hilbert space theory,
see Proposition A.4 in the Appendix). Conversely, if (i) holds, the martingale M,, is
bounded in L2, and by Theorem 12.22 we get that M,, converges a.s. andin L>. O
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Example Suppose that (¢,,),¢N is a sequence of independent random variables, such
that P(e, = 1) = P(¢;, = —1) = 1/2. Then the series

(0.¢]
n

)
nO{

n=1
converges a.s. as soon as « > 1/2. Note that absolute convergence holds only if
a>1.

12.5 Uniform Integrability and Martingales

Definition 12.24 A collection (X;);c; of random variables in L'(£2, A, P) is said
to be uniformly integrable (u.i. in short) if

im_(SupEOX Ty -a1) = 0.

iel

A uniformly integrable collection (X;);e; is bounded in L' To verify this, take
a large enough so that

sup E[1X;11qx;1>a}] <1

iel

and write E[|X;|] < E[|X;|1{x;/<a)] + E[I1X;[1{x;>a}] < a + 1. The converse is
false: a collection (X;);c; which is bounded in L! may not be uniformly integrable.

Examples

(1) The collection consisting of a single random variable Z in L' is uniformly
integrable (the dominated convergence theorem implies that E[|Z|1{z|>q}]
tends to 0 as @ — ©00). More generally, any finite subset of L!(£2, A, P) is
u.i.

(2) If Z is a nonnegative random variable in L'(£2, A, P), the set of all real random
variables X such that | X| < Z is u.i. just bound E[| X [1{x|>q}] < E[Z1{z54)]
and use (1)).

(3) Let ® : Ry — R4 be a monotone increasing function such that
x'®(x) — 400 as x — +oo. Then, for every C > 0, the set
{X € L'(2, AP : E[®(]X])] < C} is u.i. Indeed, it suffices to write

E[|X|1{x|>a}] < (sup

X
sup (p(x))E[@(IXI)],

and to note that the supremum in the right-hand side tends to 0 as a — oo.
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(4) If p € (1, 00), any bounded subset of L”(£2, A, P) is u.i. This is the special
case of (3) where @ (x) = x?”.
The name “uniformly integrable” is justified by the following proposition.

Proposition 12.25 Let (X;)ic; be a bounded subset of L'. The following two
conditions are equivalent:

(i) The collection (X;)iey is u.i.
(ii) For every ¢ > 0, one can find § > 0 such that, for every event A € A of
probability P(A) < §, one has
Viel, E[X;|1a]l<e.
Proof (1)=(ii) Let ¢ > 0. We can first fix a > 0 such that

g
sup E[| X; 11y x;|>a}] < 5
iel

If we set § = ¢/(2a), then the condition P(A) < § implies, that, forevery i € I,
£
E[1X;11a] < E[1X;11an(x;1<a}] + E[IXi11x;)5a1] < aP(A) + , <&

(i))=(@1) Set C = sup;; E[|X;[]. By the Markov inequality, we have for every
a >0,

c
Viel, P(X;|>a) < .
a

Let ¢ > 0 and choose § > 0 so that the property stated in (ii) holds. Then, if a
is large enough so that C/a < &, we have P(|X;| > a) < é foreveryi € I, and
thus, by (ii),

Viel, E[Xi|1yx,>a)] <e.

We conclude that the collection (X;);ey is u.i.
O

Corollary 12.26 Let X € L'(2, A, P). Then the collection of all conditional
expectations B[ X | G] where G varies among sub-o -fields of A is u.i.

Proof Let e > 0. Since the singleton {X} is u.i., Proposition 12.25 allows us to find
8 > 0 such that, for every A € A with P(A) < §, we have

E[1X[14] <.



282 12 Theory of Martingales

Then, for every a > 0, and every sub-o-field G,

1 E[lX
P(EIX ]l > @) < B[IE[X|G)] < “a 1

Hence, if a is sufficiently large so that E[| X|]/a < §, we get

E[ELX |Gl exig1>a)] < EIE[NX[G1EX|16150)] = ELIX 1 EIXIGl>a)] < &

where we used the characteristic property of the conditional expectation E[| X| | G].
The desired uniform integrability follows. O

Theorem 12.27 Let (X,)nen be a sequence of random variables in L' that
converges to X  in probability. The following two conditions are equivalent:

(1) The sequence (Xp)neN converges to X in L.
(i) The sequence (Xp)neN is uniformly integrable.

Remark The dominated convergence theorem asserts that a sequence (X,),en that
converges a.s. (hence also in probability) converges in L' provided that |X,| < Z
for every n, where the random variable Z > 0 is such that E[Z] < oo. This
domination assumption is stronger than the uniform integrability (cf. example (2)
above).

Proof

()=(i) If the sequence (X;)nez, converges in L', then it is bounded in L'.
Then, let ¢ > 0. We can choose N large enough so that, for every n > N,

&
E[lX, — Xn|] < 5

Since the finite set {X1, ..., Xn} is u.i., Proposition 12.25 allows us to choose
8 > 0 such that, for every event A of probability P(A) < 8, we have

Vae{l,...,N}), E[Xal14] < ;
Then, if n > N, we have also
E[lXn14] = E[|Xn[1a] + E[I X, — XNl < &.
By Proposition 12.25, the sequence (X, ),en is uniformly integrable.
(ii)=(1) Using the characterization of uniform integrability in Proposi-

tion 12.25(i1), it is straightforward to verify that the collection (X, — X,;)n,meN
is also u.i. Hence, if ¢ > 0 is fixed, we can choose a > 0 large enough so that,
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foreverym,n € N,
E[lX, — Xm|1{|Xn7Xm\>a}] < €.
Then, for every m,n € N,

E[[Xn — Xml]
<E[X, — Xullyx,—xn<e}] + El1Xn — X 1{e<|X,— X |<a)]
+E[Xy — Xullyx,—xm>a}]
<2e+4+alP(X, — X, > ¢).

The convergence in probability of the sequence (X;),cz, implies that

€ €
P(1Xn — Xm| > &) = P(1Xn — Xoo| > 2)-I-]P’(IXm — Xoo| > 2) —> 0.

n,m— 00

It follows that

limsup E[| X, — Xim|] < 2¢

m,n— 00

and, since ¢ was arbitrary, this shows that the sequence (X,),ez, is Cauchy in
L', hence converges in Ll

O

Remark As aconsequence of the theorem, we recover the result of Proposition 10.4:
if a sequence (X;,)ez, converges in probability and is bounded in L? for some
p € (1, 00), then it convergesin L', and even in L4 forevery 1 < g < p (apply the
theorem to | X,, — X0|9).

Application to martingales . By combining Theorems 12.15 and 12.17 with
Theorem 12.27, we obtain that the following three conditions are equivalent for
a martingale (X,)nez, :

(i) X, converges a.s. and in L'asn — oo.
(ii) The sequence (X,,),ez, is uniformly integrable.
(iii) The martingale (X;),ez, is closed: there exists a random variable Z €
Ll(.Q, A, P) such that X, = E[Z | F,,] foreveryn € Z.

In particular, we get that a martingale is uniformly integrable if and only if it is
closed, and in that case we have X, = E[X | F,] for every n, where X is the
almost sure limit of X,, asn — oo.
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The fact that (iii) implies (ii) can also be derived from Corollary 12.26. We could
have used this corollary and Theorem 12.27 to get a direct proof of the implication
(ii))=(i) in Theorem 12.17.

12.6 Optional Stopping Theorems

Let (X,)nez, be an adapted process. Assume that X, converges a.s. to a limiting
random variable X, which is F,-measurable. For every stopping time 7" (possibly
taking the value 400, we extend the definition of X7, which was given only on the
event {T < oo} in Proposition 12.11, by setting

o0
X7 =Y L= Xn + 1{7=00) Xco-
n=0

Then it is again true that X7 is Fr-measurable (we leave the proof as an exercise).

Theorem 12.28 (Optional Stopping Theorem for a Uniformly Integrable Mar-
tingale) Let (Xy)uez, be a uniformly integrable martingale, and let X~ be the
almost sure limit of X, as n — oo. Then, for every stopping time T, we have

X7 = E[X [ F1],

and in particular, X7 € L' and E[X7] = E[Xoo] = E[X,] for everyn € Z4. If S
and T are two stopping times such that S < T, we have

Xs =E[Xr | Fsl.

Remarks

(1) As a consequence of the theorem and Corollary 12.26, the collection {X7 :
T stopping time} is u.i.

(ii) If (Xn)nez, is any martingale, we can apply Theorem 12.28 to the *“stopped
martingale” (X,an)nez,, for every fixed integer N > 0, noting that this
stopped martingale is u.i., and we recover the last part of Theorem 12.12.
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Proof From the preceding section, we know that the martingale (X,),¢z, is closed
and X,, = E[X | F,] for every n. Let us verify that X7 € L'

00
E[lXr[] = ZE[I{T:n}lxnl] + E[1{7=00}| X ol]
n=0

o
=Y Ell7=n) [E[Xoo | Fulll + Ell{7=c0) | Xcol]
n=0

o
< D Ellr=nEl Xcol | 1l + El1{r=cc} | Xool]

n=0
(0.¢]

= Ellr=n| Xcol] + E[1{7=00)| Xcol]
n=0

= E[| Xl] < 00.
Then, if A € Fr,

E1sXrl= Y Ellanr=nXr]

neZ, Ujoo}

= Y Ellang=nXal

neZ, Ujoo}

= > Ellanr=nXol

neZ, Ujoo}

= E[14Xoo].

In the first equality, we use the fact that X7 € L! to justify the interchange of sum
and expectation via the Fubini theorem. In the third equality, we use the properties
Xn =E[ X | Fuland AN{T =n} € F, for A € Fr. Since X7 is Fr-measurable
and in L', the preceding display shows that X7 satisfies the characteristic property
of the conditional expectation E[ X | Fr].

Finally, if S and T are two stopping times such that § < T, the property Fs C
Fr (Proposition 12.9) and Proposition 11.7 imply that

Xs = E[Xoo | Fs] = E[E[Xco | Fr]]Fs] = E[XT | F5].
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Examples

(a) Gambler’s ruin. Consider a simple random walk (X, ),cz, on Z (coin-tossing
process) with Xo = k > 0. Let m > 1 be an integer such that 0 < k < m. We
set

T=inf{(n >0: X, =0o0r X,, =m}.

We know that T < oo a.s. (for instance by Proposition 10.7). From The-
orem 12.12, the process Y, = X,a7 is a martingale, which is uniformly
integrable because it is bounded. By Theorem 12.28, we have thus E[Y] =
E[Yp] = k, or equivalently

mP(Xt =m) =k.

It follows that
k k
PXy =m) = , PXr=0=1-
m m

This can be generalized to the “biased” coin-tossing X, = k+ Y1 + ... +
Y,, where the random variables Y;, i € N, are independent with the same
distribution

PYy=)=p , PMi=-1)=1-p.
Let us assume that p € (0, 1)\{;}. It is then straightforward to verify that

1— p\ X
z=(",")
p

is a martingale. Let the stopping time T be defined as above. Since E[Y;] =
2p — 1 # 0, the strong law of large numbers implies that 7 < oo a.s. Then, by
applying Theorem 12.28 to the bounded martingale Z, A7, we get

() =) 1= () e o

and, consequently,

l=pyk _ 4 I—pym _ (1=p\k
Py —my= " : P(XT=0>=(”1), o
(pP)m_l
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(b) Law of hitting times. Consider again a simple random walk (X,,),cz, on Z, now
with Xo = 0, and write X,, = U1 + - - - + U, for n € N. Our goal is to compute
the law of

T=inf{(n >0: X, =—1}.

To this end, we will compute the generating function E[rT] for r € (0, 1).
We fix r € (0,1) and try to find p > O such that the process Z, defined by
Zy=1r" pX" is a martingale with respect to the canonical filtration (F,),ez, of
the process (X, )nez, . We observe that

p 1
E[Zys1| Ful = r" TV R[pXntUnit | ] = 71 pXn B pUnt1] = r(, + 2p> Zy.

Hence, (Z,),>0 is a martingale ifr(’z) + 21p) = 1 or equivalently if p>r —2p +
r = 0. This condition holds if p = pj or p = pp, where

1—v/1=1r2 1++/1—1r2
p1 = . P2 = .

r r

We note that 0 < p; < 1 < pp. Consider then the nonnegative martingale
Zy = r",of(”, and note that Z, < 1/p; when 0 < n < T (because X, >
—1 when 0 < n < T). The stopped martingale (Z,,7)n>0 is thus bounded,
hence uniformly integrable. Theorem 12.28 implies that E[Zy] = E[Z7], and
therefore

1=Elr"(on~'1,
which gives

C1=V1-72
- . ,

Elr’1=p

We have computed the generating function of 7', and a Taylor expansion gives
P(T = n) = 0if n is even (this is obvious for parity reasons) and, for every
neN,

I1x3x---x(2n—-3)

P(T =2n—1) = -

It is instructive to try reproducing the preceding argument with the martingale
Z, replaced by Z, = " ,05( ", which is also a martingale. If we apply
Theorem 12.28 to this martingale without a proper justification and write
E[Z()] = IE[Z’T], we arrive at an absurd result: this is due to the fact that the
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martingale Z/, ;. is not uniformly integrable. When applying Theorem 12.28, it
is crucial to verify the uniform integrability assumption!

We now state the optional stopping theorem for a supermartingale. Recall that,
if a supermartingale (X,),ecz, is bounded in L', the almost sure limit X exists
(Theorem 12.15) and thus we can make sense of X7 even on the event {T = oo},
for any stopping time 7.

Theorem 12.29 Let (Xy)uez, be a supermartingale. Assume that at least one of
the following two conditions holds:

(1) X, =O0foreveryn € Z..
(ii) The sequence (Xy)nez., is uniformly integrable.

Then we have Xt € L' for every stopping time T. Moreover, if S and T are two
stopping times such that S < T, we have

Xs > E[X7 | Fs].

Proof We first note that either (i) or (ii) implies that (X,),cz, is bounded in L.
Theorem 12.15 then shows that X, converges a.s. to X, so that the definition of
X7 makes sense for any stopping time, even on the event {T" = 00}.

Consider first case (i), where X,, > 0 for every n. If T is a bounded stopping
time, we know that E[X7] < E[X(] (Theorem 12.12). Fatou’s lemma then shows
that, for any stopping time 7,

E[X7] < liminfE[X7At] < E[Xo]
—>00

and thus X7 € L!.

Then let S and T be two stopping times such that S < T. Let us first assume
that 7 < N for some fixed integer N. According to Lemma 12.19, we have then
E[Xs] = E[X7]. More generally, let A € Fg, and set

$4 (@) = {S(a)) %fa) €A,

N ifwé¢A.
It is straightforward to verify that S4 is a stopping time (just note that {4 < n} =
2ifn > N, and {SA <n}=AN{S <n} e F,if n < N, using the definition
of Fs). We define T4 in a similar manner, and note that T4 is also a stopping time
since A € Fg C Fr. Since S4 < T4, we have E[Xg4] > E[X74], and it follows
that

E[Xs14] = E[X714].

Let us come back to the general case where S and T satisfy S < T but are no
longer assumed to be bounded. Let A € Fs, and k € N. Then A N {S < k} belongs
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both to F; (by the definition of Fy) and to Fg (recall that S is Fg-measurable).
From Proposition 12.10, A N {S < k} belongs to Fsix. Hence, by applying the
bounded case to the stopping times S A k and T A k, we get

El[Xs1anis<ki] = E[Xsakclangs<iy] = E[X7ardangs<k]-

By monotone convergence,

klgfolo 1 E[Xs1anis<ky]l = E[Xs1ans<oo}]-
On the other hand, Fatou’s lemma gives

liminf E[X7 skl angs<k}] > E[XT1an(s<00}]-

k— 00
So we have obtained that

E[Xs1an(s<oo}] = E[X714an{s<00}]-

Since X5 = X7 = X on the event {§ = oo}, it follows that

E[Xs14] > E[X714] = E[E[X7 | Fs]1a].
Since this holds for every A € Fg, and both Xg and E[X7 | Fs] are Fgs-
measurable, it follows that X5 > E[X7 | Fs] a.s. (apply the last display with the set
A = {Xgs < E[X7 | Fs]}). This completes the proof of case (i) of the theorem.

Consider then case (ii). In that case, Theorem 12.27 shows that X,, converges
to X both a.s. and in L'. Since the conditional expectation is a contraction of
L', the L'-convergence allows us to pass to the limit m — oo in the inequality
X, = E[X,,+m | Fn], and to obtain that, for every n € Z,
Xn = E[Xoo | Fal.

Consider then the closed martingale Z,, = E[X | ], and set Y;, = X, — Z,,. Then
(Yn)nez, is a nonnegative supermartingale. By case (i) and Theorem 12.28, we get

first that X7 = Yr + Zr isin Ll, and then that

Ys > E[Y7 | Fsl,
Zs =E[Z7 | Fs].

It readily follows that Xg > E[ X7 | Fs]. |
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12.7 Backward Martingales

A backward filtration is a sequence (F,),cz_ of sub-o-fields of .4, which is indexed
by the set Z_ = {0, —1, —2, ...} of all nonpositive integers, and is such that F,, C
JFm whenevern, m € Z_ and n < m. We then set

Foo= () Fn

nez_

which is also a sub-o-field of A. It is important to observe that, in contrast with the
“forward case” studied in the previous sections, the o-field F, becomes smaller and
smaller when n | —oo (the larger |n| is, the smaller the o-field F,,).

In what follows, we fix a backward filtration (F,),ez_. Let X = (Xp)nez_ be
a sequence of real random variables indexed by Z_. We say that X is a backward
martingale (resp. a backward supermartingale, a backward submartingale) if X, is
Fn-measurable and E[|X,|] < oo for every n € Z_, and if, for every m,n € Z_
such thatn < m,

Xy =E[Xy | Ful (resp. X, = E[ Xy | Ful, Xu < E[Xp | Ful).

Theorem 12.30 Let (X,)qcz_ be a backward supermartingale. Suppose that

sup E[|X,] < oo. (12.7)

neZ._

Then the sequence (X,)nez._ is uniformly integrable and converges a.s. and in L'
to a random variable X 5, as n — —oo. Moreover for everyn € Z._,

E[Xp | F-col = Xco,
and equality holds in the last display if (X,)nez_ is a backward martingale.

Remarks

(a) Inthe case of a backward martingale, condition (12.7) holds automatically since
we have X,, = E[X¢ | F] and thus E[|X,|] < E[|Xo]|] for every n € Z_. By
the same argument, the uniform integrability of the sequence (X,),ez_ in the
case of a martingale follows from Corollary 12.26.

(b) In the “forward” case studied in the previous sections, the fact that a super-
martingale (or even a martingale) is bounded in L! does not imply its uniform
integrability. In this sense, the backward case is very different from the forward
case.

Proof We start by establishing the a.s. convergence of the sequence (X, ),<z_. This
is again an application of Doob’s upcrossing inequality. Let us fix an integer K > 1,
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and set, foreveryn € {0, 1, ..., K}

Y, = X_kin,

n

g,{( =F_K+n-

Forn > K, set YnK = Xo and gf = Fo. Then (Y,,K)nez+ is a supermartingale
with respect to the (forward) filtration (g,{f )nez, - By applying Lemma 12.14 to the
submartingale —YnK , we get, for everya < b,

(b—a)E[Nk([a, b], =Y*)] < E[(-YE —a)"1 = E[(-X0—a)"] < |a| +E[|Xo]].
When K 1 00, Nk ([a, b], —YX) increases to

N([a,b], —X) :=suplk € Zy :qm; <n; < --- <my <ng <0,

_Xml faa_an Zba-'-a_kaSaa_XnkZb}

which is the total upcrossing number of (—Xj),cz_ along [a, b]. The monotone
convergence theorem thus implies that

(b —a)E[N([a, b], =X)] < |a| + E[| Xo|] < oo.

It follows that we have N([a, b], —X) < oo for every rationals a < b, a.s. By
Lemma 12.13, this implies that the sequence (X,),cz_ convergesin R, a.s. asn —
—oo. Furthermore, our assumption (12.7) and Fatou’s lemma also show that the
limit X o verifies E[| Xoo|] < 00.

Let us now show that the sequence (X,),cz_ is uniformly integrable. We fix
¢ > 0 and prove that, if @ > 0 is large enough, we have E[| X, | 1{|x,|>q}] < € for
everyn € Z_.

Since the sequence (E[X _;]),ez, is increasing and bounded (by (12.7)) we may
find an integer K < O such that, foreveryn < K,

E[X,] < E[Xx] + ;

By Proposition 12.25 applied to {X g}, we can fix § > 0 small enough so that, for
every A € A such that P(A) < § we have

P
E[lXk[1a] < 5"

The finite set {Xx, Xx+1, ..., X—1, Xo} is uniformly integrable. Thus, we can
find ag > 0 such that, for every a > ag, we have

Ell X, 1qx,>a)] < &,
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foreveryn € {K, K+1, ..., —1,0}. Thanks to (12.7), we can also assume that, for
every a > ap,

1
sup{E[|X,|]:n € Z_} < 6. (12.8)
a
Then, for every negative integer n < K,

E[1 X1 x,>a}]
= IE[_an{X,,<fa}] + IE[an{X,,>a}]
= _E[an{X,,<fa}] + E[Xn] - E[an{X,,Sa}]

< —E[E[Xk | Fullix,<—a}] + E[X k] + ; — E[E[Xk | Fullix,<a)]

= —ElXk1ix,<-a}] + E[Xk]+ ; — E[Xk1{x,<a}]

= —E[Xk1(x,<—a)] + E[Xk1{x,>a)] + ;

< BIX kIl o] + 5
In the first inequality of the last display, we use the property E[X,,] < E[Xg]+¢/2
and the supermartingale inequality X, > E[Xg | F,]. The next equality uses the

characteristic property of E[Xk | F,,]. We then observe that, for every n < K and
every a > ao,

1
P(Xnl > a) < . E[lXnl] <4,
by (12.8). It follows from our choice of é that we have
&
E[| Xk [1{x,1>a}] < 5

for every n < K and a > ap. By combining this with our preceding bound on
E[| X, |1{x,|>a}], we obtain that, for every a > ap andn < K,

Ell X, 1qx,>a)] < &,

Since this bound also holds forn € {K, K + 1, ..., —1, 0}, this completes the proof
of the uniform integrability of the sequence (X;,)nez_ -

The remaining part of the proof is easy. By Theorem 12.27, we get that the
sequence (X,)nez_ converges in L!. Then, writing

E[Xn14] < E[X,14]
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form <n <0and A € F_ C Fy, and passing to the limit m — —oo, we get
E[X,14] < E[Xool4]l, VA€ F_w.
We have thus
E[E[X, | F-oolla] < E[Xoola]l, VA€ F_w.

and since X 1S F_oo-measurable, this suffices to obtain E[X,, | F_co] < Xoo
(the same argument was used at the end of the proof of Theorem 12.29 (i)). If X
is a martingale, the same inequality also holds for —X and this gives the equality
E[X, | Focol = Xo- O

Corollary 12.31 Let Z be a random variable in L', and let (Gnnez, be a
decreasing sequence of sub-o -fields. Then,

a.s.,L!

EIZ|Ga] 25 EIZ|Gec]

where

HEZ+

Proof For every n € Z_, set X, = E[Z | G_,] and F, = G_,. Thanks to
Proposition 11.7, (X),ez_ is a martingale with respect to the backward filtration
(Fn)nez_. Theorem 12.30 thus ensures that X, converges a.s. and in L'asn —
—o00. Moreover, by the last assertion of Theorem 12.30,

oo = E[Xo|F-co]l = E[E[Z | Fol | F—oo] = E[Z | F_co].
0O
Applications (A) The strong law of large numbers. Let us give a first application to
an alternative proof of the strong law of large numbers (Theorem 10.8). We consider
a sequence (&,),en of independent and identically distributed random variables in

L. We set Sp = 0, and for everyn > 1,

Sn=§1‘|‘"'+$n-

We first observe that

1
E[&1[S:] = n Sn- (12.9)
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Let us justify this equality. We know that there exists a real measurable function g
such that E[&1 | S, ] = g(Sy). Letk € {1, ..., n}. Then the pair (&, S,) has the same
distribution as (&1, Sp,), so that, for every bounded measurable function 2 on R,

E[&h(Sn)] = E[£§14(S0)] = E[g(Sn)h(Sn)]

which shows that we have also E[&, | S;] = g(Sy). It follows that
ng(Sn) =EE1+ -+ &S] =5

giving the desired formula (12.9).
For every n € N, set

Gn =08, &nt1, 812, .. ) =0 (Sp) Vo l&urt, Enra, ...

As a consequence of Proposition 11.10 applied with Z = &1, H1 = o(S,) and
Ho =0 (nr1, Ent2s .. .), We have

1
E[&11Gn] = El§1 | Sp] = R

Note that the sequence (G,),en is decreasing (because S,+1 = S, + &i+1).
We can thus apply Corollary 12.31 to get that rllSn converges a.s. and in L. As
we already noticed after the Kolmogorov zero-one law (Theorem 10.6), the limit
must be constant and therefore equal also to lim rllE[S,,] = E[&]. In this way,
we recover the strong law of large numbers, with the L!-convergence that had not
been established in the proof of Theorem 10.8. Note that the argument relies on
Corollary 12.31, which uses only the (easier) martingale case of Theorem 12.30.
(B) The Hewitt-Savage zero-one law. Let &1, &, ... be a sequence of independent
and identically distributed random variables with values in a measurable space
(E, £). The mapping  — (& (w), &2(w), ...) defines a random variable taking
values in the product space EN, which is equipped with the smallest o-field for
which the coordinate mappings (x1, x2, ...) —> x; are measurable, foreveryi € N.
Equivalently, this o-field is generated by the “cylinder sets” of the form

{()Cl,)CQ,...)EENI)ClEBl,XQEBQ,...,XkEBk}

where k € N and By, ..., By are measurable subsets of E.
A measurable function F : EN — R is said to be symmetric if

F(x1,x2,x3,...) = F(Xg1), Xz 2)s X2 3)s - - -)

for every (x1,x2,...) € EN and every permutation 7 of N with finite support
(meaning that there exists an integer N such that 7 (i) = i for every i > N).
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Theorem 12.32 Let F be a symmetric function on EN. Then, the random variable
F (&1, &, ...) is almost surely constant.

Example Suppose that the random variables &1, &, ... take values in R9, and
consider the (d-dimensional) random walk

If B is a Borel subset of R,

Lcard{n>1:X, € B}=c0)
is a symmetric function of &1, &, . ... We have thus
P(card{n > 1: X,, € B} =00) =0or 1.

Proof Without loss of generality, we may assume that F' is bounded. Let us
introduce the o -fields

Fo=0@E1....8), Fo=\ Fa=018,..),

neN

and

Gn =0 Ent1:nt2,--) > Goo =[] Gu-

neN

AlsosetY = F(&1,&,...) and, foreveryn € N,

Then Corollary 12.18 ensures that X,, converges to E[Y | Foo] = Y, a.s. and in L,
whereas Corollary 12.31 shows that Z, converge to E[Y | Goo] a.s. and in L'. Note
that we must have E[Y | Goo] = E[Y] because the o-field G, contains only events
of probability zero or one (Theorem 10.6).

Let us fix ¢ > 0. By the preceding considerations, we can fix a sufficiently large
value of n such that

EllX, Y|l <e, E[|Z, - E[Y]]] < e. (12.10)
On the other hand, by Proposition 8.9, there exists a measurable function g, :

E" — R such that X,, = g, (&1, ...,&,), and the first bound in (12.10) can be
rewritten as

E[lF(&1,8,..) —gn(1,.... 8l <&
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Now note that the sequence (41, ...,&n,&1,...,&, Ent1,...) viewed as a
random variable with values in EN has the same law as (£1,&...) (just check
that both laws coincide on cylinder sets, which form a class closed under finite
intersections and generating the o-field on EN). So the preceding bound also implies
that

]E[lF(él’H“lf "'752}’11 gls '-'1§nvé2n+17 ) - gl’l(él’k‘rlf 752}’1)'] <é&.

However,

Fényr, - 6m, 81, 6 6m, .. )=F(&,86,..)=Y

because F is symmetric, and we have obtained

E[lY — gnnt1, ... &0l < &. (12.11)

By conditioning on the o -field G,, we have

E[ELY |Gn] — Elgn(Ent1, - -5 520) 1Gnll] <€,

and thus

ElZy — gnGnt1s .., E20)l] <& (12.12)
By combining (12.11) and (12.12) with the second bound in (12.10), we get
E[Y — E[Y]]] < 3e.

Since ¢ was arbitrary, we have proved that Y = E[Y] a.s. O

12.8 Exercises

Exercise 12.1 Let (X,),en be a sequence of independent real random variables.
Set So =0and S, = X1 +---+ X, for every n € N, and consider the canonical
filtration (F)nez, of the process (Sy)nez, . Prove that:

(1) If X, e L' for every n, :Sz =8 — ]Ev[Sn] is a martingale.

(2) If X, € L? for every n, (Sp)* — E[(S,)?]is a martingale.

(3) If, for some 0 € R, E[e?*"] < oo for every n € N, then ees"/E[ees"] is a
martingale.
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Exercise 12.2 Let T be a stopping time.

(1) Prove that, for every n € Z, and every A € F,, the set AN {T > n} belongs to
Fr.

(2) For B € Foo, let TE : 2 — [0, 00] be defined by T2 (w) = T(w) if v € B,
and T8(w) = oo if w € B°. Prove that T2 is a stopping time if and only if
B e Fr.

Exercise 12.3 Let T be a stopping time. Assume that there exists ¢ € (0, 1) and an
integer N > 1 such that, for every n > 0,

P(T <n+N|F,) >¢e, as.
Prove that T < oo a.s. and E[T] < oo.
Exercise 12.4 Let (S,),ez, be a simple random walk on Z, with o = k € Z, and

consider a function ¢ : Z x Zy —> R. Prove that ¢(S,, n) is a martingale if ¢
satisfies the functional relation

eos+1l,n+D)+es—1,n+1)=20¢(s,n).
Infer that 2 — n and S> — 3n.S, are martingales.
Exercise 12.5 Let (X;),ez, be an adapted random process such that X, € L! for
every n € Z4. Prove that this process is a martingale if and only if the property
E[Xr] = E[X(] holds for every bounded stopping time 7.
Exercise 12.6 Let (X,),cz, be amartingale, and let T' be a stopping time such that
PT <oco)=1, EllXrll <oco, E[X7|lir>n] —> 0.
(1) Prove that E[| X7 — X7n|] —> O.
n—o0

(2) Conclude that E[X7] = E[Xp].

Exercise 12.7 Let (X,) ez, be amartingale with X = 0. Assume that there exists
aconstant M > O such that | X,,+1 — X,,| < M foreveryn € Z..

(1) ForC > 0and K > 0,set Tc, ¢k = inf{n > 0: X, > K or X,, < —C}. Prove
that

lim P(T¢c g < oo, X1ex < —C)=0.

C—+00
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(2) Prove that, P(dw) almost surely, (exactly) one of the following two properties
holds:

* X, (w) has a finite limit as n — o0;
* sup,.o Xu(w) = 400 and inf, >0 X, (w) = —oo.

Exercise 12.8 (Wald’s Identity) Let (X,),cn be a sequence of independent and
identically distributed random variables in L'.SetSy=0and S, = X1 +---+ X»
forevery n > 1, and let (F,),cz, be the canonical filtration of (S,)uez, -

(1) Let T be a stopping time such that E[7T] < oo. Prove that the random process
M, = Syt — (n A T)E[X1] is a uniformly integrable martingale.
(2) Prove that Sy € L' and E[S7] = E[T1E[X].

Exercise 12.9 (Another Proof of the Strong Law of Large Numbers) We
consider a sequence (X;),en of independent and identically distributed random
variables in L!, and assume that E[X1] > 0. For every n > 0, we set S, =
X1+ -+ X, (So = 0)and I, = min{S; : 0 < k < n}. Finally, we set
T=inf{n >0:S, >0} <+4o0.

(1) Let n > 0. Verify that the two random vectors (Sp, S1, $2, ..., Sy) and (S, —
Sy Sn—8Sn—1, 8y — Su—2, ..., Sy — So) have the same law and use this to obtain
that P(T > n) = P(S,, = I,,), and

E[T] = E[ i 1{5n=1n}:|.
n=0

(2) Verify that, forevery n > 0, E[SyA7] = E[X 1] E[n A T].

(3) Inthis question only, we assume that there is a constant C > O such that X; < C
a.s. Deduce from the preceding question that E[n A T] < C/E[X], for every
integer n > 0. Using question (1), verify that

oo
ZI{SFIH} < 00, a.s.
n=0

and conclude that ing S, > —00, a.s.
n>

(4) Show that the conclusion of question (3) remains valid without the assumption
that X1 < C a.s. (Hint: Choose C > 0 so that E[ X 1{x,<c}] > 0.)

(5) Prove the strong law of large numbers (Theorem 10.8). (This short proof of the
strong law of large numbers is taken from [5].)
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Exercise 12.10 Let (X,),en be a sequence of independent random variables. For
everyn > 1,setG, = o(X,, Xy41,...) and

n=1

Use Corollary 12.18 to give a martingale proof of the fact that P(A) = 0 or 1 for
every A € G (Theorem 10.6).

Exercise 12.11 The goal of this exercise is to prove that a Lipschitz function on
[0, 1] can be written as the integral of a bounded measurable function. We fix a
Lipschitz function f : [0, 1] —> R (there exists L > O such that | f(x) — f(y)| <
L|x — y| forevery x, y € [0, 1]). We also let X be a random variable with values in
[0, 1), which is uniformly distributed over [0, 1). For every integer n > 0, we set

X, =27"12"X] and Z,=2"(f(Xn+27") — f(Xn)),

and we let (F)ez, be the canonical filtration of the process (Xy)nez, -

(1) Verity that o (Xo, X1, ...) = 0(X), and F,, = 0(X,) forevery n > 0.

(2) Compute E[Ah(X,,+1) | Fn] for any bounded Borel function # : R — R. Infer
that (Z,)nez, is a bounded martingale with respect to the filtration (F)pez, -

(3) Show that there exists a bounded Borel function g : [0, 1) —> R such that
Z, — g(X)asn — 00, a.s.

(4) Verify that a.s. for every n > 0,

(5) Conclude that, for every x € [0, 1],
fx) = f(0)+/0 g(u)du.

Exercise 12.12 Consider a sequence (X, ),ez, of random variables with values in
[0, 1], such that Xg = a. Foreveryn > 0, set F,, = 0(Xo, X1, ..., X,). We assume
that, for every n > 0,

14+ X,
2

X
]P)<Xn+1 ="

2 ]:Vl>:1_XVlv ]P)<Xn+1:

}'n) — X,.
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(1) Prove that (Xy),ez, is a martingale with respect to the filtration (Fy)nez,
which converges a.s. to a random variable Z.

(2) Prove that E[(X,41 — X,,)?] = iE[Xn(l — Xl

(3) Compute the distribution of Z.

Exercise 12.13 (Polya’s Urn) At time 0, an urn contains a white balls and b red
balls, where a, b € N. We draw one ball at random in the urn, and replace it by
two balls of the same color to obtain the urn at time 1. We then proceed in the same
manner to get the urn at time 2 from the urn at time 1, and so on. Thus, at time
n > 0, the urn contains a + b + n balls. To simplify notation, we set N = a + b.

(1) For every n > 0, let Y;,, be the number of white balls in the urn at time n, and
X, = Y, /(N-+n) (which is the proportion of white balls at time n). We consider
the filtration F,, = o (Yo, Y1, ..., ¥;,). Show that (X,),cz, is a martingale that
converges a.s. to a limiting random variable denoted by U.

(2) Consider the special case where a = b = 1. Prove by induction that, for every
n > 0, Y, is uniformly distributed over {1, 2, ..., n 4 1}. Give the distribution
of U in that case.

(3) We come back to the general case. Fix k > 1, and, for every n > 0, set

Y Yu+1D---Yn+k—-1)

Z, = .
N+n)(N+n+1)---(N+n+k—1)

Prove that (Z,,),ez, is a martingale, and then compute E[U k.

Exercise 12.14 (Yet Another Proof of the Strong Law of Large Numbers)

(1) Let (Z,)neN be a sequence of independent random variables in L2, such that
E[Z,] = O for every n and

o var(Zy,)

Z 2 =X
n

n=1

n n
For everyn € N, we set S, = ZZ/ and M,, = Z Z.j.
j=1 j=1 7
Prove that M,, converges a.s. as n — 00, and infer that S, /n converges a.s. to
0 as n — oo. Hint: Verify that
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(2) Let (Xn)nen be a sequence of independent and identically distributed random
variables in L!. For every n € N, set

Yy = Xn 1yx,2n)-

Verify that E[Y,,] — E[X] as n — oo. Then prove that almost surely there
exists an integer no(w) € N such that X, = Y, for every n > ng(w), and that

>, var(Yy)

Z 2 =
n

n=1

(3) Conclude that rll(X1 +---+ X,) — E[X ]as.asn — o0.

Exercise 12.15 (Law of the Iterated Logarithm) Let (X,),cy be a sequence of
independent Gaussian N (0, 1) random variables, and S, = X; +...+ X,, for every
n e N.

(1) Prove that, for every & > 0 and n € N, we have for every ¢ > 0,

JP( max S > c) < e B[]

1<k<n
and consequently
2

]P’( max Sp > c) < exp(—; ).

1<k<n n

(2) Forevery x > e, set h(x) = \/2x loglog(x). Prove that

lims Sn <1 a.s
im su , .S.
n—)oop ]’l(”l) -

Hint: For K > 1 fixed, bound the probabilities

P( max S > Kh(K”—l)).
1<k<K"

Exercise 12.16 (Kakutani’s Theorem) Let (X,),en be a sequence of independent

positive random variables, such that E[X,] = 1 for every n. Set My = 1 and, for
everyn € N,

n
M, = ]—[ X¢.
k=1
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(1) Prove that (My),>0 is a martingale, which converges a.s. to a limit denoted by
M.

(2) Forevery n > 1, we set a, = E[/X,] € (0, 1]. Verify that the following three
conditions are equivalent:
(@ EMx]l=1;
(b)) M, — M« inL'asn — oo;

(c) l_[ a > 0.
k=1

If these conditions do not hold, prove that M, = 0 a.s.
Hint: Use Scheffé’s lemma (Proposition 10.5), and also consider the process

Nn=]i[*/X".

a
k=1 k

Exercise 12.17 Let (X,),cNy be a sequence of independent Bernoulli random
variables with parameter 1/2, and let (a,)neny be a sequence of positive real
numbers. For every n > 1, set

n
Sn ZZ(X]‘ Xj.
j=1

(1) Prove that the condition 2?11 ajz. < oo implies that S,, converges a.s. asn —
00.

(2) Prove that if 2?11 a? = oo then sup, .y Sp = 00 and inf,en S, = —00, ass.
(Hint: Use Theorem 10.6 and consider the martingale (S,)> — E[(S,)?]).



Chapter 13 )
Markov Chains Chack for

This chapter is devoted to Markov chains with values in a finite or countable
state space. In contrast with martingales, whose definition is based on conditional
means, the definition of a Markov chain involves conditional distributions: it is
required that the conditional law of X, knowing the past of the process up to
time n only depends on the value X, at time n (and the dependence is always the
same when n varies). This is the Markov property, which roughly speaking says
that the knowledge of the past does not give more information than the present
in order to predict the future. A reinforcement of this property, which is a very
important tool for applications, is the strong Markov property, which replaces the
deterministic time n by a stopping time. Using the strong Markov property, we
investigate recurrent states (states at which the process returns infinitely many times)
and transient states. The notion of invariant measure makes it possible to define the
asymptotic frequency of visits of a recurrent state, via a form of the ergodic theorem.
The last section discusses relations between Markov chains and martingales.

13.1 Definitions and First Properties

Throughout this chapter, E is a finite or countable space, which is equipped as usual
with the o-field P(E) (all functions defined on E are measurable!). A stochastic
matrix on E is a collection (Q(x, y))(x,y)eExE Of real numbers that satisfies the
following two properties:

i) 0<Q(x,y) <l,foreveryx,y € E;

(ii) foreveryx € E, Y Q(x,y) = L.
yeE
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This notion is equivalent to the notion of a transition probability from E into E
(see Definition 11.14). Indeed, if we set

v(x,A)=) Q@x.y), «x€E ACE,
yeA

we get that v is a transition probability from E into E, and conversely, starting from
such a transition probability v, the formula Q(x, y) = v(x, {y}) defines a stochastic
matrix on E.

For every n > 1, we define Q,, := (Q)" by analogy with the usual matrix
product: we set Q1 = @, and then, by induction,

Qni1(x,9) =) 0u(x,2)0(, y).

zeE

It is straightforward to check that Q,, is again a stochastic matrix on E. We also set
Qo(x, y) = 1{x=y}. Then, for every integers m, n > 0, we have Q1 = 0 Oy, in
the sense that

Onin(x,3) =Y On(x,2)Qn(z, ).

zeE

Finally, for every integer n > 2, an easy induction shows that

e, )= > 0 x)QX1,x2) - QX2 Xu1) Q(n1, V).

X15X250005 Xp—1€E

(13.1)

For every function f : E — R (resp. for every bounded function f : E —>
R), the notation Q f will stand for the function defined on E by

Of(x):=) 00, »f(), x€E,

yeE

which takes values in [0, oo] (resp. in R). If v is a measure on E, we also set, for
everyy € I,

V() =Y v(x)Q(x, ).

xeE

Definition 13.1 Let Q be a stochastic matrix on E, and let (X,),ez, be a random
process with values in E defined on a probability space (£2, A, P). We say that
(Xn)nez, is a Markov chain with transition matrix Q if, for every integer n > 0,
the conditional distribution of X, knowing (Xo, X1, ..., X,) is Q(X,, -). This is
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equivalent to saying that
P(Xn41 =yl Xo=x0, X1 =x1,..., Xn = xn) = Q(xn, y),

for every xo, ..., xy,y € E such that P(Xp = x9, X1 = x1, ..., Xpn = x5) > 0.

Let us comment on this definition and derive a few consequences. Saying that
the conditional distribution of X, 4+ knowing (Xo, X1, ..., Xp) is Q(X,, -) means
that, forevery y € E,

]P)(Xn—i-l = le()aXla L) Xn) = Q(Xna }’)

(beware that the quantity in the left-hand side is a conditional expectation: we use
the notation P(A | Z) for the conditional expectation E[14 | Z]). The equivalence
with the last sentence in the definition comes from the formula for the conditional
expectation with respect to a discrete random variable, which we apply here to
conditioning with respect to (X, X1, ..., X,) (see Section 11.1).

Using the formula in the last display and the properties of conditioning with
respect to nested sub-o-fields (Proposition 11.7), we also get that, for every subset
{it,...,ix}of {0,1,...,n — 1} we have

P(Xnt1 =y1Xip, ..., Xig, Xn)
= E[P(Xn+1 = y1Xo, X1, -+, X)) | Xiys oo+, Xiys Xl
= E[Q(Xn, ) | Xiys -+, Xig, X
= 0(Xn, y).

In particular,

P(Xyr1 =y X)) = Q( Xy, y)

which is equivalent to saying that, for every x € E such that P(X,, = x) > 0,
P(Xnt1 =yl Xn =x) = Q(x, y).

This last equality provides an intuitive explanation of the behavior of the Markov
chain. If the chain sits at time n at the point x of E, it will “choose” the point visited
at time n 4 1 according to the probability measure Q(x, -).

Remarks

(i) For a general random process (X,,),ez, , the conditional distribution of X, 11
knowing (Xo, X1, ..., X») can be written in the form v((Xo, X1, ..., X»), *)
where v is a transition probability from E”*! into E (cf. Definition 11.16): this
conditional distribution depends a priori on all variables Xo, X1, ..., X, and
not only on the last one X,,. The fact that for a Markov chain the conditional
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distribution of X, 41 knowing (Xo, X1, ..., X,) only depends on X, is the so-
called Markov property: to predict the future X, 1, the knowledge of the past
(Xo, X1, ..., X,) does not give more information than the present X,,. We will
later see other forms of the Markov property, which obey the same general
principle.

(i) The function Q(x,-) that gives the conditional law of X, ; knowing that
X, = x does not depend on the integer n. This is the time-homogeneity of
the “transition mechanism”. One could also consider inhomogeneous Markov
chains for which the transition mechanism between times n and n + 1 depends
on n, but in the present course we consider only homogeneous Markov chains.

Proposition 13.2 A random process (Xn)nez, with values in E is a Markov chain
with transition matrix Q if and only if, for everyn > 0 and every xg, X1, ...,x, € E,
we have

P(Xg=x0, X1 =x1,..., X5 = Xp)
= P(Xo = x0) Q(x0, x1) Q(x1, x2) - - - Q(Xn—1, Xn)- (13.2)

Proof If (Xn)nez, is a Markov chain with transition matrix Q, formula (13.2) is
derived by induction on n, by writing

P(Xo = x0, X1 = X1, ..., Xn = Xn, Xn41 = Xnt1) =

=P(Xo =x0,..., Xn = xn) X P(Xp11 = xn41 | Xo =x0,..., Xn = xn),

if P(Xg = x0,..., X, = x,) > 0G0 P(Xg = x0,..., X, = x,,) = 0, the desired
formula at order n 4 1 is a trivial consequence of the one at order n).

Conversely, assuming that (13.2) holds, one immediately gets that, if P(Xo =
X0, ..., Xp =x5) >0,

P(Xn+l=y|X0=x0a---aXn=xn)

_ P(Xo = x0) Q(x0, x1) - - - Q(xn—1, Xn) O (Xp, )

P(Xo = x0) Q(x0, X1) - - - Q(Xn_1, Xn) = Q(xn, ).

O

Remark Formula (13.2) shows that, for a Markov chain (X;),ez,, the law of
(Xo, X1, ..., Xn) is completely determined by the initial distribution (the law of
X0) and the transition matrix Q.

The next proposition gathers a few other simple properties of Markov chain. In
particular, part (i) restates in a slightly different form some properties already stated
after the definition.
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Proposition 13.3 Let (X,)nez, be a Markov chain with transition matrix Q.

(i) For every integer n > 0 and every measurable function f : E — R,
E[f(Xn+1) 1 X0, X1, ..., Xp] = E[f (X410 | Xn] = Of (Xn).
More generally, for every subset {i, ..., ik} of {0, 1,...,n — 1}, we have
ELf(Xn+0) 1 Xiys oo Xig, Xl = Of (Xn).
(ii) For every integersn > 0, p > 1 and for every yi,...,yp € E,

P(Xnt1 =15+ Xnap =Ypl Xo, ..., Xn)
= 0(Xn, yDOW1,y2) ... O(yp—1, Yp)s

and consequently,
]P)(Xn+p = yplxn) = ]P)(Xn+p =Yp | X0, ..., Xp) = Qp(Xn, yp)-

Ifwe fixn > 0 and set Y, = X,4p for every p € Z, the random process
(Yp) pez, is also a Markov chain with transition matrix Q.

Proof
(1) Writing f(Xu41) = ZyeE f () 1x,, =y}, we get from the definition that
ELf (Xn+1) | X0, X1, ..., Xnl = Z SO P(Xnt1 =y Xo, X1,..., Xn)

yeE

=Y 0Xu. 0 f)

yeE
= Qf(Xn)

Then, if {iy, ..., ix}isasubsetof {0, 1,...,n — 1},

E[f(XVlJrl)'Xi]v cee Xikv Xn]
= E[E[f(Xnt+1) | X0, X1, ... Xl Xiys ooy Xy, X
= E[Qf(XVl)le[s DR Xiks Xn]
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(i) It immediately follows from (13.2) that

P(Xn+1 :)’17---,Xn+p:)’p|X0:x01~-~7Xn :xn)
= Qxn, yDOO1,¥2) - Q(Yp—1,Yp)s

if P(Xg = x0,...,Xn = x,) > 0. This gives the first assertion in (ii). The
formula P(X,4p = yp | Xo,...,Xn) = Qp(Xy,yp) is then obtained by
summing over possible choices of yi, ..., yp—1 and using (13.1), and to get

P(Xn+p = yp | Xn) we just have to take conditional expectations with respect
to X,. To derive the last assertion, we use the preceding formulas to write

PY1=y1,....Yp =yplY0)
=PXnr1 = Y1, s Xutp = yp | Xn)
=E[P(Xn+1 =y1, -+ Xntp = yp | Xo, .., Xn) | Xn]
= Q(Xn, yDOW1,y2) -+ Q(yp—1, ¥p)

and thus

P(Yo =0, Y1 =y1,....Yp =yp) =P(X, = y0) Q(yo, ¥1) - - - Q(yp—1, ¥p)-

The desired result then follows from the characterization in Proposition 13.2.

O

13.2 A Few Examples

13.2.1 Independent Random Variables

Let (Xn)nez, be a sequence of independent and identically distributed random
variables with values in E. If i denotes the law of Xy, then (X, ),ez, is a Markov
chain with transition matrix

O(x,y) =pn(y), Vx,yekE.

The proof is immediate. This is not the most interesting example of a Markov chain!
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13.2.2 Random Walks on 74

Let n, &1,&,...,&,, ... be independent random variables with values in 74, We
assume that &1, &, . . . have the same law denoted by 1, and we set, for every n > 0,

Xn:n+€l+§2+"'+€n-

Then (X;)nez, is a Markov chainin £ = Z4 with transition matrix

O(x,y) =uly—x), Vx,yeZl
To verify this, use the fact that &, is independent of (Xo, X1, ..., X;) to write

P(Xyt1 =yl Xo =x0, X1 =x1,..., Xy = xn)
=PGnt1 =y —xn|Xo = x0, X1 = x1, ..., X = xp)
=PEr+1 =y —xn)
= u(y — Xn).

We say that (X, ),ez, is a random walk on 74 with jump distribution .

Let (eq, ..., eq) denote the canonical basis of RY. In the special case where
uie) = u(—e;) = 21d for every i € {1,...,d}, the Markov chain (X;),ecz, is
called simple random walk on Z?. This generalizes the simple random walk on Z
(coin-tossing process) already studied in Proposition 10.7 and in Chapter 12. Simple
random walk on Z¢ is a special case of simple random walk on a graph, which is
discussed in the next section.

13.2.3 Simple Random Walk on a Graph

Let P> (E) denote the set of all subsets of E with two elements, and let A be a subset
of Po(E). If {x, y} € A, we say that the vertices x and y are linked by an edge. For
every x € E, set

Ax={ye E:{x,y} € A},

which is the set of all vertices that are linked to x by an edge. We assume that A, is
finite and nonempty for every x € E. We then define a transition matrix Q on E by
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setting, for every x, y € E,

1
if (x.yl € A,
0. y) = cardn, THYIE

0 otherwise.

A Markov chain with transition matrix Q is called simple random walk on the graph
(E, A). Informally, this Markov chain sitting at a point x of E chooses at the next
step one of the vertices connected to x, uniformly at random.

13.2.4 Galton-Watson Branching Processes

Recall the definition of these processes, which were already studied in Chapter 12.
Let p be a probability measure on Z and let £ € Z... We define by induction

Xo=1¢
Xn
Xn+1=Z$n,ja Vn € Zy,
=1

where the random variables &, ;, n € Z, j € N are independent and identically
distributed with law 1. Then (X;,),ez, is a Markov chainin E = Z, with transition
matrix

Ox,y) =u™ (), Vx,yeZy,

where the convolution 1*f is defined for every integer k > 1 by induction, setting
w*' = pand p** D = p** s 4, and by convention 1*? is the Dirac measure at 0.
By Proposition 9.12, u** is the law of the sum of k independent random variables
with law .

Indeed, by observing that the random variables &, ;, j € N are independent of
Xo, ..., X,, we have

P(Xnt1 =y1X0o=x0, X1 =x1,..., Xy = xp)

Xn
=P(Z$n,j =y‘X0=xo,X1 =X1,..., Xp =xn>
j=1

- P(igw = y)
j=1

= pu ().
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13.3 The Canonical Markov Chain

In this section, we explain how to make a canonical choice of a probability space
(and a random process) to get a Markov chain with a given transition matrix. This
is in contrast with the previous chapters, where the underlying probability space
was not specified, except sometimes in examples. In the context of Markov chains,
this canonical choice will have several advantages. In particular, it will enable us
to consider simultaneously the given Markov chain with all possible initial points,
which will be very useful in forthcoming developments.
We start with an existence result.

Proposition 13.4 Let Q be a stochastic matrix on E. We can find a probability
space (82, A, P) on which, for every x € E, one can construct a random process
(X;)nez, whichis a Markov chain with transition matrix Q, such that X = x.

Proof We consider a probability space (§2, A, P) on which there exists a sequence
(Un)nen of independent random variables uniformly distributed over (0, 1). We
saw in Section 9.4 that we can find such a probability space (we may indeed take
§£2 = [0, 1] equipped with its Borel o-field and with Lebesgue measure). Then let
Y1s Y25 - - - Yk, - - - D& an enumeration of the elements of E. We assume here that E
is infinite, but the finite case can be treated in exactly the same way.

Letus fix x € E. We set XS = x and then, for every k € N,

Xj=w if Y Q@y)<Uir< Y 0y

I<j<k I<j=k

We see that Xf is well defined since Z?‘;l O(x,yj)) = 1land 0 < U; < 1.
Furthermore, we have P(X] = y) = Q(x, y) forevery y € E since U is uniformly
distributed over (0, 1). We continue by induction and, for every n € N we set

Xpgo=w if ) 0X5.y) <Um1 = Y OX5.yj).
I=<j<k l<j=<k

We observe that (X7, Xf, ..., X}) is a (measurable) function of (Uj, ..., U,) and
is therefore independent of U, 11. We use this observation to write, for every n > 1
and k > 1,

P(X; 1 = vkl Xo = x0, X] = x1,... X, = xn)

=P( Y 0w y) <Unri = Y. QG yp) | X5 =0, Xp =52

1<j<k 1<j<k
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ZP( Z Q(x,,,yj)< Upy1 < Z Q(xna)’j))

1<j<k 1<j<k
= Qxn, y&)-
It follows that (X7),ez, is a Markov chain with transition matrix Q. |

Let us now explain our canonical choice of a probability space. We take
Q@ = E%,

so that an element of € is a sequence w = (wp, w1, W2, ...) of elements of E. The
coordinate mappings X,,, n € Z are then defined by

X, () = wy.

We equip €2 with the smallest o -field for which the coordinate mappings X,,, n € Z
are measurable. We denote this o-field by §. Equivalently, § is generated by the
“cylinder sets” of the form

Z. .
{(wo, w1, 2,...) € E™" two =x0,..., 00 = Xn}

wheren € Z4 and xq, ..., x, € E.

Lemma 13.5 Let (G, G) be a measurable space, and let { be a function from G
into Q. Then  is measurable if and only if X,, o  is measurable, for everyn € 7.

Proof The “only if” part is immediate since a composition of measurable functions
is measurable. So let us assume that X, o ¥ is measurable, for every n € Z, and
prove that i is measurable. We observe that

F=(AeF:v A eq

is a o-field on €2, which by assumption contains all sets of the form X ! (v),y € E.
It follows that all coordinate mappings X, are measurable with respect to §, which
implies § C §. O

Theorem 13.6 Let Q be a stochastic matrix on E. For every x € E, there exists a
unique probability measure Py on (R, §) such that, under Py, the coordinate process
(Xi)nez, is a Markov chain with transition matrix Q, and Py(Xo = x) = 1.

We will say that, on the probability space (£2,§, Py), the coordinate process
(Xi)nez., is the canonical Markov chain with transition matrix Q and initial value x.
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Proof Let x € E. Proposition 13.4 allows us to construct a process (X;)nez.,
defined on a probability space (£2, A, P), which is a Markov chain with transition
matrix Q, such that Xf)‘ = x. We define P, as the pushforward of PP under the

mapping
w > (X, (@)nez,

from £2 into . An application of Lemma 13.5 shows that this mapping is
measurable (its composition with X, is just the random variable X;, on £2). We
have P, (Xp = x) = P(X{ = x) = 1 and moreover, for every xg, x1, ..., X, € E,

P.(Xo =x0, X1 =x1, ..., Xy = x) =P(Xy = x0, X] =x1,..., X;, =x,)
=P(X{ = x0) Q(x0, x1) ... Q(Xn—1, Xp)
=P (Xo = x0) Q(x0, X1) ... Q(Xp—1, Xn)

which shows that, under the probability measure Py, the coordinate process is a
Markov chain with transition matrix Q (Proposition 13.2).

As for uniqueness, suppose that Py is another probability measure satisfying
the properties stated in the theorem. Then Py and P, assign the same value to any
cylinder set. Since cylinder sets form a class closed under finite intersections, which
generates the o-field §, Corollary 1.19 implies that P, = P,. a

Remarks

(a) By the last assertion of Proposition 13.2, we have, foreveryn > Oandx, y € E,

P (X, =) = Qn(x, y).

(b) Let u be a probability measure on E. We set

Py=) pn0)P

xeE

which defines a probability measure on 2. By writing down the explicit formula
for P, (Xp = xo, ..., X,y = x;), and using Proposition 13.2, we get that, under
P,, Xu)nez, is a Markov chain with transition matrix Q, and the law of Xg is
w. Note in particular that Ps, = P,.

(¢) Let (Yy)nez, be a Markov chain with transition matrix Q defined under the
probability measure P, such that Yy = x, [P a.s. Then, for every measurable
subset B of = EZ+, we have

P((Yn)nez, € B) = Px(B).
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Indeed, this equality holds when B is a cylinder set, and then a monotone class
argument gives the general case. This equality shows that all the results that we
will establish later for the canonical Markov chain (as given by Theorem 13.6)
carry over to any Markov chain with the same transition matrix (no matter on
which probability space it is defined).

In the remaining part of this section, we deal with the canonical Markov chain
associated with a transition matrix Q. One of the main motivations for introducing
this canonical Markov chain is the fact that it makes possible to define shifts on the
space 2. For every integer k > 0, we define the shift 6y : & — 2 by

Ok ((@n)nez,) = (Wk+n)nez, -

Lemma 13.5 shows that this mapping is measurable. By definition, we have
X, 0 6y = X4, for every k, n > 0. Equivalently, 6y (w) = (Xk(w), Xi+1(®), ...)
represents the future of the Markov chain after time k.

We will use the shifts 6 to state a more precise version of the Markov property.
We first introduce the canonical filtration on £ by setting §, = 0 (Xo, X1, ..., Xp)
for every n > 0. We also use the notation E,, resp. E,,, to denote expected values
under Py, resp. under P,,.

Theorem 13.7 (Simple Markov Property) Let F and G be two nonnegative
measurable functions on @ and let n > 0. Suppose that F is §,-measurable. Then,
foreveryx € E,

E.[F G 06,] = E.[F Ex, [G]].
Equivalently,
E[G 06,|5.] = Ex, [G],

meaning that the conditional distribution of 6, (w) knowing (Xo, X1, ..., X,) is Px,,.

Note that the quantity Ex, [G] is the composition of X, with the function
x +— E,[G]. In particular it is a function of X,, and thus an §,-measurable random
variable

Remark The formulas of Theorem 13.7 are immediately extended to the case where
E, is replaced by E,, for any probability measure x on E. The same observation
applies to Theorem 13.8 below.

Proof 1t is enough to prove the equality Ex[G o 6, | §,] = Ex,[G], as the first
assertion then follows from the characteristic property of Ex[G o 6, | §,]. Assume
first that G is of the form

G = 1xXp=y0.X1=y1....X,=,)
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where p € Z and yo, ..., yp € E. Inthat case, forevery y € E,

Ey[G] = 1=} O30, Y1) . .- O(¥p—1, ¥p)

and the desired formula follows from Proposition 13.3 (ii). A monotone class
argument then shows that the result still holds if G = 14, A € § (note that we
use the version of the monotone convergence theorem for conditional expectations).
Finally we get the desired result for nonnegative simple functions by linearity, and
for nonnegative measurable functions by monotone convergence. O

Theorem 13.7 gives a general form of the Markov property: the conditional law
of the future 6, (w) given the past (Xo, X, ..., X;;) is given by Px,, and thus only
depends on the present X,,. It will be very important to extend this property to the
case where the deterministic time # is replaced by a random time.

To motivate this extension, consider the problem of knowing whether the chain
started from a point x returns to x infinitely many times. In other words, if

(o)
N, = Z 1x,=x)
n=0

do we have P, (N, = oo) = 1? It is in fact sufficient to verify that the chain returns
to x at least once. If H, = inf{n > 1 : X,, = x}, with the usual convention
inf @ = 400, then

Pi(Ny = 00) = 1 & Py (H, < 00) = 1.

The implication = is trivial. Conversely, suppose that P, (H, < oo) = 1. Provided
we can apply the extended Markov property mentioned above to the random time
Hy, we get that the law of 0, (0) = (X, 41 (®))nez, is Px. But then, by writing

Nx(@) =14 Ny (0, (w))

we get that N, has the same law as 1 + N, under P,, which is only possible if
Ny = o0, P, a.s.

The next theorem will allow us to give a rigorous justification of the preceding
argument (and the resulting property will be discussed in the next section). Recall
from Section 12.2 the notion of a stopping time T in the filtration (§,)nez, . and
the definition of the o -field §7 representing the past up to time 7 (Definition 12.8).
If T is a stopping time, then, provided that 7 (w) < oo, we can define 67 (w) =
(X7 (w)+n(@))nez. , which represents the future after time 7'.
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Theorem 13.8 (Strong Markov Property) Let T be a stopping time of the
filtration (§n)nez... Let F and G be two nonnegative measurable functions on 2.
Suppose that F is §T-measurable. Then, for every x € E,

Ei[1{7<o0) F G 0 0r] = Ex[l{7 <o) F Ex,[G]].
Equivalently,

E [1iT <00} G 0 07 |87] = 17 <00} Ex; [G].

Remark The random variable X7, which is defined on the §7-measurable set {T <
oo}, is §r-measurable (cf. Proposition 12.11, note that this proposition considered
a real-valued random process, but the argument goes through without change in our
setting). The random variable Ex,[G], which is defined also on {T < oo}, is the
composition of the mappings @ — Xr(w) and x — E,[G].

In the same way as Theorem 13.7, Theorem 13.8 can be interpreted (a little
informally) by saying that the conditional distribution of the future after 7 (that
is, 01 (0) = (X11)nez, ) knowing the past (Xo, X, ..., Xr), is the law P, of the
Markov chain started at X7, and thus depends only on the “present” Xr.

Proof 1t is enough to prove the first assertion. Since F is §r-measurable, it is
immediate to verify (from the definition of the o-field §7) that 1i7—, F is §,-
measurable, for every integer n > 0. It follows that

Ex[l{T=n} F GofOr]l= Ex[l{T=n} F Gob,]= Ex[l{T=n} FEX,, [G]]
= Ex[1{7=n) F Ex;[G]]
by the simple Markov property (Theorem 13.7). We get the desired result by

summing the formula of the last display over all n € Z,..
O

Corollary 13.9 Let x € E and let T be a stopping time. Assume that P.(T <
o0) = 1 and that there exists y € E such that P,(Xr = y) = 1. Then, under the
probability measure Py, 07 (w) is independent of §1 and distributed according to Py.

Remark 67 (w) is not defined on the event {T = oo}, but this definition is irrelevant
since we assume that P, (T < o0) = 1.

Proof Let F and G be as in Theorem 13.8. Then,
Ex[F G071 ()] = Ex[F Ex;[G]] = Ex[F Ey[G]] = Ex[F]E,[G]

and the assertions of the corollary follow. O
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13.4 The Classification of States

From now on, unless otherwise mentioned (in particular in examples), we will
consider the canonical Markov chain introduced in the previous section for a
given stochastic matrix Q on E. As explained above, all the results that we will
derive carry over to Markov chains with the same transition matrix defined on any
probability space.

Recall the notation

Hy = inf{n > 1:X, = x}
oo

Ny = 1(x,=x)-
n=0

Proposition 13.10 Let x € E. Then:

e cither P,(H, < 00) = 1, and then
Ny =00, Pas.

in this case x is said to be recurrent;
e orP,(H, < o) < 1, and then

Ny <00, Pyas.

and more precisely P.(N, = k) = P.(H, = o0)P,(H, < oo)k_1 for every
k > 1, and Ex[N,] = 1/P.(H, = 00) < 00, in this case x is said to be
transient.

Proof For every k > 1, the strong Markov property shows that

P (Ny > k+ 1) = Ex[1{g, <co) L{n, >k} © On, ]
= Ex[1{H, <00} Ex[1{n,>1}]]
= x(Hx < OO)P)C(N)C > k)

Since P, (N, > 1) = 1, we get that P, (N, > k) = Py (Hy < oo)k_1 forevery k > 1
by induction. If P, (H, < oo) = 1 it immediately follows that P, (N, = oo) = 1. If
P.(H, < o0) < 1, we obtain the law of Ny under Py, and in particular

1

EdNe =) BNezhy=p <

k=1

Q.
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Definition 13.11 The potential kernel of the Markov chain is the function defined
on E x E by

U(x,y) = E,[N,].

Note that U (x, y) > 0 if and only if the probability for the chain started from x
to visit the point y is positive.

Proposition 13.12
(i) Foreveryx,y € E,

Ux,y) = Qnlx, ).
n=0

(ii) U(x, x) = oo if and only if x is recurrent.
(iii) Foreveryx,y € E, withx # Yy,
Ux,y) =Pc(Hy <00)U(y, ).

Consequently, if y is transient, we have Py (Ny < 00) =1 for every x € E.

Proof To get (i), we write

Ut ») =B Y Iimmy | = YR =) = > 0w, ),
n=0 n=0 n=0

Property (ii) follows from Proposition 13.10 and the definition of U.
The first part of (iii) follows from the strong Markov property: if x # y,

Ex[Ny] = Ex[l{Hy<oo}Ny o 9[—1},] = Ex[l{Hy<oo}Ey[Ny]] = Px(Hy < 00) U(ys y)'

The last assertion is then immediate since y is transient if and only if U (y, y) < oo,
which implies E,[N,] = U(x,y) < oo forevery x € E. |

Example Consider the Markov chain on Z¢ with transition kernel

1 d
O((x1, .-y xa), Y1, -5 ¥a) = 2d l—[l{\yi—xflzl}

i=1

(this is a special case of random walk on Z). It is easy to verify that this Markov
chain started from O can be constructed as (Ynl, e, Y,j’ Jnez..» where the random
processes Yl ..., Y%are independent simple random walks on Z, started from 0. It
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follows that
0,0,0) =Py =0,....,Y¢ =0) =Py} =0).

However IE"(Yn1 = 0) = 0if n is odd, and if n = 2k is even, a simple counting
argument left to the reader shows that

o (2k
P(Y,, =0) =2 2’<(k).

Consequently,

00 00 2% d
U©0,0)=>" 0x%0.00=)_ <22’< <k )) )
k=0

k=0

Stirling’s formula shows that

S <2k o CH*VaArk \/1
k) koo 22k((’;)k\/2nk)2 “Voark

We conclude that O is recurrent if d = 1 or d = 2, and transient if d > 3. When
d =1, the Markov chain with transition matrix Q is simple random walk on Z, and
the fact that O is recurrent also follows from Proposition 10.7, or from the martingale
argument explained after Corollary 12.16. When d = 2, the Markov chain with
transition matrix Q is not simple random walk on 72 (as defined in Section 13.2.2),
but a simple argument allows us to get the recurrence of 0 for simple random walk
on Z?. Just observe that (Ynl, Ynz) takes values in the subgroup H of Z? consisting
of all pairs (7, j) such that i + j is even, and note that this subgroup is isomorphic to
Vi through a group isomorphism @ such that @((1, 1)) = (0, 1) and @ ((1, —1)) =
(1, 0). Then the claimed recurrence property follows from the fact that @ ((Ynl, Ynz))
is simple random walk on Z?. This argument does not apply in dimension d > 3,
but one can prove that 0 is transient for simple random walk on Z¢ when d > 3.

Let us come back to the general setting. We denote the set of all recurrent points
by R.

Lemma 13.13 Assume that x € R and that y is a point of E\{x} such that
U(x,y) > 0.Then, y € R and Py(Hy < 00) = 1, hence in particular U(y, x) > 0.

Proof Let us start by showing that P,(H, < oo) = 1. To this end, we write
0 =P (Ny <00)>P(Hy <00, Hy 09Hy = 00)
= Ex[1{#, <00} X 1{H,=00) © 0H,]
= Ex[l{Hy<oo} P, (H, = 00)]
=P, (Hy < 00) Py(H, = 00).
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The assumption U (x, y) > O implies that P,(H, < oc0) > 0, and it follows that
Py (H, = 00) =0, sothat Py(H,; < c0) = 1.

Then, we can find integers n1, no > 1 such that Q,, (x, y) > 0, and Q,, (y, x) >
0. For every integer p > 0, we have

an+p+n1 y,y) = Py(an =X, Xn2+p =X, Xn2+p+n1 =y)

= an(yax)Qp(-xax)in(x’ y)

and therefore

UG ) 2 Y Qoo (0 9) 2 0 (02 0)( D @, 1)) Oy (x, 3) = 00

p=0 p=0
since x € R implies Z;O:o Qp(x,x) = U(x,x) = oo. We conclude that y € R.
O

As a consequence of the lemma, if x € R and y € E\R, we have U(x,y) = O:
the chain started from a recurrent point cannot visit a transient point. This property
plays an important role in the following statement.

Theorem 13.14 (Classification of States) Let R be the set of all recurrent points,
and T = inf{n > 0 : X, € R}. There exists a (unique) partition

R=JR
iel
of R, such that the following properties hold:
(a) foreveryi € I and x € R;, we have Py a.s.

¢ Ny = +OO, Vy € Rl‘;
« N,=0, VyecE\R;

(b) forevery x € E\R, we have P, a.s.
* eitherT =ooand Ny < oo, Vy € E,

* orT < oo, then there exists a (random) index j € I such that X, € R; for
everyn > T, and Ny = o0 forevery y € R;.

The sets R;, i € I, are called the recurrence classes of the Markov chain.

Proof For x,y € R, set x ~ y if and only if U(x,y) > 0. It follows from
Lemma 13.13 that this defines an equivalence relation on R (note that Q, (x, y) > 0
and O, (v, z) > 0 imply Qp4+m(x, z) > 0). The partition (R;);c; then corresponds
to the equivalence classes for this equivalence relation.
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Leti € [ and x € R;. We have then U(x, y) = 0 for every y € E\R; (in case
y € E\R, we use Lemma 13.13) and thus Ny, = 0, Py a.s. for every y € E\R;.
On the other hand, if y € R;, we have P, (Hy < 00) = 1 by Lemma 13.13, and the
strong Markov property shows that

P, (Ny = 00) = Ex(1{, <o) 1N, =oc} © 01,1 = P (Hy < 00) Py(Ny = 00) = 1.

If x € E\R, then P, a.s. on the event {T = oo}, the chain does not visit R and
furthermore N, < oo for every y € E\R by Proposition 13.12 (iii). On the event
{T < oo}, let j be the (random) index such that X7 € R;. By applying the strong
Markov property at T, and the first part of the statement, we easily get that, P, a.s.
on the event {T < oo}, we have X, € R; foreveryn > T, and N, = oo for every
¥y € R;j. We leave the details to the reader. O

Definition 13.15 The chain is said to be irreducible if U (x, y) > O forevery x, y €
E. We also say that Q is irreducible.

The chain is irreducible if, for every x, y € E, the chain starting from x visits y
with positive probability.

Corollary 13.16 If the chain is irreducible,
e cither all states are recurrent, there exists only one recurrence class, and we have
foreveryx € E,
P.(Ny, =00, Vy e E) =1.

e or all states are transient, and for every x € E,

P.(Ny <00, Vy e E) = 1.

When E is finite, only the first case occurs.

Proof 1f there exists a recurrent state, then Lemma 13.13 immediately shows that
all states are recurrent, and since U (x, y) > O for every x, y € E, we also see that
there is just one recurrence class. The remaining part of the statement follows from
Theorem 13.14, except for the last assertion, which we can prove by contradiction.
If E is finite and all states are transient, then

P, as., ZNy < 00



322 13 Markov Chains

which is absurd since

00 o]
Z Ny = Z Z Iix,=y) = Z Z 1ix,=y) = 00.

YEE yEE n=0 n=0yeE

O

An irreducible Markov chain such that all states are recurrent will be called
recurrent irreducible.

Examples We will now discuss the classification of states for each of the examples
presented in Section 13.2. Before that, let us emphasize once again that all results
obtained for the canonical Markov chain carry over to any Markov chain (Yy,),ez.,
with the same transition matrix Q (and conversely). For instance, if Yo = y a.s. then
writing N}/ = ZZO:O 1{y,=x}, we have for every k € Z U {oo},

P(N) = k) = Py(Ny = k)),
since the left-hand side can be written as

P((YH)HEZ+ S B)a

with B = {w € E%+ : Ny (w) = k}, and it suffices to apply Remark (b) following
Theorem 13.6.

(1) Independent and identically distributed random variables with law . In
that case Q(x, y) = u(y). The Borel-Cantelli lemma shows that y is recurrent
if and only if u(y) > 0, and there is only one recurrence class. The chain is
irreducible if and only if (y) > O forevery y € E.

(2) Random walk on Z<. In that case,

n
Yo =Yo+ ZE[
i=1

where the random variables &; take values in 74, and are independent and
distributed according to © (and are also independent of Yp). Then, since
QO(x,y) = pu(y — x) only depends on y — x, it follows that U (x, y) is also
a function of y — x. Since x is recurrent if and only if U (x, x) = oo, we get that
all states are of the same type (recurrent or transient).

We assume that E[|&(]] < oo, and we set m = E[&]] € R4,

Case m # 0 In that case, the strong law of large numbers implies that
lim |Y,| =00, as.
n—o00

It follows that all states are transient.
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Casem = 0 In that case, things are more complicated. In the special case of simple
random walk, the discussion following Proposition 13.12 shows that the chain is
recurrent irreducible when d = 1 or d = 2 (one can also prove that all states are
transient when d > 3).

We give a general result whend = 1.
Theorem 13.17 Consider a random walk (Y,) ez, on Z whose jump distribution u
is suchthat ) ;o |kl (k) < oo and) oy ku(k) = 0. Then all states are recurrent.

Moreover the chain is irreducible if and only if the subgroup generated by {x € Z :
w(x) > 0} is Z.

Proof Let us assume that 0 is transient, so that U (0, 0) < co. We will see that this
leads to a contradiction. Without loss of generality, we assume throughout the proof
that Yo = 0. We observe that, for every x € Z,

U@, x) <U(x,x)=U(0,0)

where the first inequality follows from Proposition 13.12(iii). Consequently, for
everyn > 1,

> U@0.x) <@+ 1U©0.0) < Cn (13.3)

[x|<n
where C = 3U (0, 0) < oo.
On the other hand, by the law of large numbers, n-! Y, convergesto O a.s., hence

also in probability. Setting ¢ = (4C)~! > 0, we can thus find N large enough, so
that, for everyn > N,

1
P(|Yn| < en) > 5’

or, equivalently,

1
PRAUE RN
|x|<en
If n > p > N, we have also

> 0,002 Y 000>,

|x|<en |x|<ep
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and then, by summing over p € {N, ..., n}, we get, for everyn > N,

Y vooz=Y 3 0,0.x)> ”_ZN

lx|<en p=N |x|<en

However, by (13.3),ifen > 1,

3 UO.x) < Cen = Z

[x|<en

We get a contradiction as soon as n is large. This shows that 0 (and hence every
X € 7Z) must be recurrent.

We still have to prove the last assertion. Let G be the subgroup generated by
{x € Z: nu(x) > 0}. It is immediate that

P(Y, € G,VneZ,) =1

(recall that we took Yo = 0). Hence, if G # Z, the Markov chain is not irreducible.
Conversely, assume that G = Z. Then set

H={xeZ:UQ©,x) >0}

and note that H is a subgroup of Z:

e ifx,y € H, the lower bound

Onip0,x +y) = 0a(0,x) Qp(x, x + y) = 0n(0,x) 0p(0, y)

shows thatx +y € H;
e if x € H, the fact that O is recurrent and the property U(0,x) > 0 imply
U(x,0) > 0 (Lemma 13.13) and, since U (x,0) = U(0, —x), we get —x € H.

Finally, since H clearly contains {x € Z : pu(x) > 0}, we obtain that H = Z.
Recalling that U(x, y) = U(0, y — x), we conclude that the chain is irreducible.
O

For instance, if u© = %872 + ;52, all states are recurrent, but there are two
recurrence classes, namely even integers and odd integers.

(3) Random walk on a graph. Consider the case of a finite graph: E is finite and
A is a subset of Po(E) such that A, := {y € E : {x, y} € A} is nonempty for
every x € E. The graph is said to be connected if, for every distinct x, y € E,
we can find an integer p > 1 and elements xo = x, x1,...,Xp_1,Xp =y of E
such that {x;_1, x;} € A foreveryi € {1, ..., p}.
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Proposition 13.18 Simple random walk on a finite connected graph is recurrent
irreducible.

Proof Trreducibility immediately follows from the connectedness of the graph.
Corollary 13.16 then gives the recurrence. O

(4) Galton-Watson branching processes. In that case, £ = Z4 and Q(x, y) =
w**(y), where u is a probability measure on Z,. We exclude the trivial case
n = 91.
We observe that 0 is an absorbing state, meaning that

Po(VvrneZ,, X, =0) = 1.
Hence 0 is (trivially) recurrent.

Proposition 13.19 For a Galton-Watson branching process with offspring distribu-
tion | # 81, 0 is the only recurrent state. Consequently, we have a.s.

o cither there exists an integer N such that X,, = 0 for everyn > N;
e orX, — +ooasn — oQ.

Remark We saw in Chapter 12 that the first case (extinction of the population)
occurs with probability 1 if m = ) ku(k) < 1, and that the second case occurs
with positive probability if m > 1 (we verified this under the additional assumption
that ) k% (k) < oo, but this assumption can easily be removed, see Exercise 13.5).

Proof We first show that all states but O are transient. Consider the case w(0) > 0.
Ifx >1,U(x,0) > P, (X; =0) = n(0)* > 0 whereas U(0, x) = 0. This is only
possible if x is transient. Suppose then that ;£ (0) = 0. Since we exclude u = 6y,
there exists k > 2 such that w(k) > 0, and, for every x > 1, P,(X] > x) > 0,
which implies that there exists y > x such that U(x, y) > 0. Since it is clear that
U (y, x) = 0 (in the case ©(0) = 0 the population can only increase!), we conclude
again that x is transient. The remaining part of the statement now follows from
Theorem 13.14: if the population does not become extinct, the fact that transient
states are visited only finitely many times ensures that, for every m > 1, states
1, ..., m are no longer visited after a sufficiently large time, which exactly means
that X, — oo. |

By considering a branching process in the case where ©(0) > O and m > 1
we see that the two possibilities in part (b) of Theorem 13.14 may both occur with
positive probability: starting from a transient state, the chain may eventually reach
the set of recurrent states (0 in the case of branching processes) or stay in the set of
transient states.
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13.5 Invariant Measures

A recurrent irreducible Markov chains visits any state infinitely many times. The
notion of invariant measure will allow us to define a frequency of visit for each
state, and thus to say that some states are visited more often than others.

Definition 13.20 Let © be a (positive) measure on E, such that u(x) < oo for
every x € E and u(E) > 0. We say that p is invariant for the stochastic matrix Q
(or simply invariant if there is no risk of confusion) if

VyeE, p() =Y u®0,y).

xeE

In matrix form, the invariance property reads uQ = . Since Q, = (Q)" for
every n > 1, we can iterate this relation and get that u 9, = u for every n.

Example For a random walk on Z¢ with jump distribution y, we know that
Q(x,y) = y(y — x) is a function of y — x, and it immediately follows that the
counting measure on Z¢ is invariant.

Interpretation Assume that u(E) < oo (which holds automatically if E is finite).
Up to replacing u by w(E)~'u, we can assume that s (E) = 1. Then, for every
function f : E — R4,

EfXDI=) u(0) ) 0@, NFG) =D f3) Y n0)QE, ) =Y u(F(©)

xek yeE yeE xekE yeE

which shows that, under P,, X has the same law u as Xo. Using the relation
nwQn = Q, we get similarly that, for every n € Z, the law of X,, under P, is p.
More precisely, for every nonnegative measurable function F on = E%+,

E [F o61] = E.[Ex,[F]] = ZM(X)Ex[F] =Eu[F]

xeE

which shows that, under P,, (Xi4n)nez, has the same law as (X;),ecz, (and
similarly, for every integer k > 0, (Xy4n)nez, has the same law as (X;)nez, ).

Definition 13.21 Let 1 be a measure on E such that w(E) > 0 and n(x) < oo for
every x € E. We say that i is reversible (with respect to Q) if

Vx,y € E, u(x)0(x,y)=un)0®y,x).

Proposition 13.22 Any reversible measure is invariant.
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Proof 1f 1 is reversible, then, forevery y € E,

Y @0, ) =Y n(O®y, x) = pu(y).

xeE xeE

O

Conversely, there are invariant measures that are not reversible. For instance, the
counting measure is invariant for any random walk on Z¢, but it is reversible only
if the jump distribution y is symmetric (y (x) = y(—x)). In fact, reversibility is a
much stronger condition than invariance. However, if a reversible measure exists, it
is usually easy to find.

Examples

(a) Biased coin-tossing. This is the random walk on Z with transition matrix
QG i+1)=p
Q@(,i—1)=q=1—-p

where p € (0, 1). In that case, one immediately verifies that the measure
i
nir=("). ez
q

is reversible, hence invariant. Notice that p is different from the counting
measure (which is also invariant), except when p = 1/2.
(b) Random walk on a graph. The measure

p(x) = card(Ay)
is reversible. Indeed, the property u(x)Q(x,y) = u(y)Q(y, x) is trivial if
(x,y) ¢ A, and, if {x, y} € A,

pn(x)Q(x, y) = card(Ay) L=pn(y)Q®,x).

card(Ay) -

(c) Ehrenfest’s urn model. This is the Markov chain in E = {0, 1, ..., k} with
transition matrix

k_.
0(.j+1) = kjifosjsk—w,

Q@j—D=i if1<j<k.

This models the distribution of k particles in a box containing two compartments
separated by a wall. At each integer time, a particle chosen at random crosses
the wall. The Markov chain corresponds to the number of particles in the first
compartment.
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In that example, a measure p is reversible if and only if

k= . J+1
n =u(G+1
) k (J ) k

for 0 < j < k — 1. This property holds for

. k .
M(J)=<j), 0<j=k

Markov Chains

Let us come back to the general setting and state a first theorem.

Theorem 13.23 Suppose that x is a recurrent point. The formula

Hy—1
V) =E| Y Iy ], W eE,
k=0

(13.4)

defines an invariant measure. Moreover, v(y) > 0 if and only if y belongs to the

recurrence class of x.

Proof We first observe that, if y does not belong to the recurrence class of x, we

have E;[Ny] = U(x, y) =0, and a fortiori v(y) = 0.

We note that, in (13.4), we can replace the sum from k = O to k = H, — 1 by
a sum from k = 1 to k = H,. We use this simple observation to write, for every

yeE,

v(y) = Ex[il{xkzy}]
k=1

Hy
= ZEx[ I{Xk—IZZ,Xk:)’}:I
z€E k=1
o
= Z ZEx [l{kst, Xi-1=2) I{Xk=y}]
z€E k=1
o
= Z ZEX [l{kgﬂx,xk,Fz}:I 0(z,y)
z€E k=1
Hy
= ZEXI:Z I{Xk—IZZ}] Q(Za J’)
z€E k=1

=Y v@0, ).

zeE
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In the fourth equality, we used the fact that the event {k < H,, Xs_1 = z} is §k—1-
measurable to apply the Markov property at time k — 1.

We have thus obtained the equality vQ = v, which we can iterate to getvQ, = v
for every integer n > 0. In particular, for every integer n > 0,

ZU(Z)Qn(z,x) =vx) = 1.

zeE

Suppose that y belongs to the recurrence class of x. Then there exists n > 0 such
that Q,(y, x) > 0, and the preceding display shows that v(y) < oco. We can also
find m such that Q,,(x, y) > 0, and it follows that

V() =Y V@) Om(z.y) = Om(x.y) > 0.

zeE

O

Remark If there is more than one recurrence class, then by picking a point in
each class and using Theorem 13.23, we construct invariant measures with disjoint
supports.

Theorem 13.24 Assume that the Markov chain is recurrent irreducible. Then, there
is only one invariant measure up to multiplication by positive constants.

Proof Let p be an invariant measure (Theorem 13.23 shows how to construct one).
We prove by induction that, for every p > 0, for every x, y € E,

pA(Hy—1)

ORI N I DS T} (13.5)
k=0

If y = x, this is immediate (equality even holds). So it is enough to prove (13.5)
when y # x. If p = 0, this is trivial. Let p > 0, and assume that (13.5) holds at
order p for every x, y € E. Then, if y # x,

pO) =Y 1@ 0y

zeE
PAHx=1)
>u Y B[ Y 1m0y
€k k=0

p
= 1) YD B[ ez k1) |0 W)

Z€E k=0
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14
=u@x) Y Y E, [l{xk=z, k<H.—1) l{Xk+1=y}]

z€E k=0
PA(H~1)
=M(X)Ex[ > 1{Xk+1=y}]
k=0
(p+DAH,

= HWE] Y Ixemn ]

k=1

which gives the desired result at order p + 1. Note that, as in the proof of
Theorem 13.23, we used the fact that {X; = z, k < H, — 1} is §,-measurable
to apply the Markov property at time k.

By letting p — +o00in (13.5) we get

He—1
n) = RO E] Y x|
k=0
Fix x € E. The measure
Ho—1
ve(y) =Ex[ > I{Xk:)’}:l
k=0

is invariant (Theorem 13.23), and we have pu(y) > p(x)v.(y) for every y € E.
Hence, for every n > 1,

p(x) =Y (@) 0n(z, %) = Y u(0)ve(2) Qu(z, %) = pn(xX)ve(x) = p(x).

zeE zeE

It follows that the inequality in the last display is an equality, which means that
w(z) = pu(x)vy(z) holds for every z such that Q,(z, x) > 0. Irreducibility ensures
that, for every z € E, we can find an integer n such that Q,(z,x) > 0, and we
conclude that u = p(x)v,, which completes the proof. |

Corollary 13.25 Assume that the chain is recurrent irreducible. Then:

(i) Either there exists an invariant probability measure |1, and we have, for every
x ek,
1

E.[H:] = )
] pm(x)
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(ii) Or all invariant measures have infinite mass, and, for every x € E,
E,[H;] = oc.
The chain is said to be positive recurrent in case (i) and null recurrent in case (ii).

Remark 1f E is finite, only case (i) can occur.

Proof By Theorem 13.24, all invariant measures are proportional. Hence, either
they all have infinite mass (case (ii)) or they are all finite, and one of them is a
probability measure (case (i)). In case (i), let i be the unique invariant probability
measure, and let x € E. Then, if v, denotes the invariant measure constructed in
Theorem 13.23,

Hy—1

v =B 3 1xm]
k=0

we know that u is proportional to vx: u = Cvx with C > 0. Writing | = p(E) =
C v, (E), we find C = (v,(E))~', and thus

@1
HO = E) T B
However,
H,—1 H.—1
(B = Y B D Tmn | =B 30 (X tximn) | = EalHal,
yeE k=0 k=0 yeE

which gives the desired formula for E,[H,]. In case (ii), v, is infinite, and the
calculation in the last display gives Ex[H,] = vy (E) = oco. O

The next proposition gives a useful criterion to prove the recurrence of a Markov
chain.

Proposition 13.26 Assume that the chain is irreducible. If there exists a finite
invariant measure, then the chain is recurrent (and thus positive recurrent).

Proof Let y be a finite invariant measure, and let y € E such that y(y) > 0. For
every x € E, Proposition 13.12(iii) gives the bound

D 0ux, ) =Ux,y) U, ).
n=0
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We multiply both sides of the preceding display by y (x) and sum over all x € E.
We get

Y ¥ 0u(») = VEYUG. Y.
n=0

Since y is invariant, we have y Q,(y) = y(y) > 0 for every n > 0. We conclude
that

Y(E)U(y,y) = oo.

Since y (E) < oo by assumption, it follows that U (y, y) = oco. Hence y is recurrent.
The desired result then follows from Corollary 13.16. O

Remark The existence of an infinite invariant measure does not allow one to prove
recurrence. For instance, we have seen that the counting measure is invariant for any
random walk on Z¢, but many of these random walks are irreducible without being
recurrent.

Example Let p € (0, 1). Consider the Markov chain on E = Z with transition
matrix

Ok, k+1)=p, Qk,k—1)=1—p, ifk>1,
000,1) = 1.

This chain is irreducible. Furthermore, one immediately verifies that the measure ©
defined by

p k—1
M(k)z( ) L ifk>1,
I—p
n@=1-p,
is reversible hence invariant.
If p < 1/2, p is a finite measure, and Proposition 13.26 implies that the chain

is positive recurrent (we will see later that it is null recurrent when p = 1/2 and
transient when p > 1/2).

13.6 Ergodic Theorems

We keep on considering the canonical Markov chain associated with a transition
matrix Q.
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Theorem 13.27 Assume that the chain is recurrent irreducible, and let | be an
invariant measure. Let f and g be two nonnegative measurable functions on E such
that [ fdpu < oo and0 < [ gdu < oo. Then, for every x € E, we have, Py a.s.,

S fXe [ fdu
S g(Xp) oo [gdu

Remark The result still holds when f fdu = oo: just use a comparison argument
by writing f = lim 1 f;, with an increasing sequence (fi)ren Of nonnegative
functions such that f Jrdp < oo for every k.

Corollary 13.28 Ifthe chain is irreducible and positive recurrent, and if | denotes
the unique invariant probability measure, then, for any nonnegative measurable
function f on E and for every x € E, we have, Py a.s.,

1 n
DY s — [ rae
k=0

This corollary immediately follows from Theorem 13.27 by taking g = 1 in this
statement.

Proof of Theorem 13.27 We fix x € E. We set
To=0, T = Hy
and then by induction,
Tyy1 = inflk > T, : Xp = x}.

It is straightforward to verify that 7, is a stopping time for every n > 0. Since x is
recurrent, we also know that 7,, < oo for every n > 0, P, a.s. Let us set, for every
k>0,

Tiy1—1

ZifH =Yy fXn).

n=Ty

O

Lemma 13.29 The random variables Zi(f), k = 0, 1, 2, ..., are independent and
identically distributed under P;.
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Proof Let go, g1, &2, - - . be bounded measurable functions on R . It is enough to
prove that, for every integer k > 0, we have

k k
E[ [TeiZi(»] = [TEdaiZo)1.

i=0 i=0

We prove this by induction on k. For k = 0 there is nothing to prove. Suppose that
the preceding display holds at order k — 1, for some k > 1. Then we observe that:

 the random variables Zo(f), Z1(f), ..., Zr—1(f) are §7,-measurable (we leave
this as an exercise for the reader);

* 01, (w) is independent of §7, and distributed according to Py, by Corollary 13.9;

* we have Zy(f) = Zo(f) o 61,, by construction.

It follows from these observations that

Ex[ﬁgi(zi(f>)] = Ex[(lﬁgi(zi(f)))gk(zo(f) 06r)|
i=0 i=0

k—1

= E:| [Ta:(Zi ()| EslguZo(F))

i=0

which gives the desired result at order k. O

Let us return to the proof of the theorem. As previously we write v, for the
invariant measure defined in formula (13.4). Then & = p(x)vy since vy (x) = 1 and
we know from Theorem 13.24 that all invariant measures are proportional. We then
observe that

Hy—1

EdZoN =E[ D D f0 e | = 2 f 00 0) =

k=0 yeE yEE

J fdu
pn(x)

Lemma 13.29 and the strong law of large numbers then show that, P, a.s.

n—1

1 d

) N Zi(f) — Jfdu (13.6)
k=0

n—oo  (x) ’

For every integer n > 0, write N, (n) for the number of returns to x for the chain up
to time n, Ny (n) = 22:1 1ix,=n)- We have then Ty ;) < n < Ty, (n)+1. Writing

Tnemy—1 Tnymy+1—1

DX ) FXo > fXp
k=0 k=0 k=0

< < -
Ny (n) - Niy(n) Ny (n)

3
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or equivalently

Nx(n)—1 Ny (n)

Yz Y X Y Zi)
k=0 =0

j=0 < <
Nem) = Ne() = Ne()

s

we deduce from the convergence (13.6) and the property Ny (n) — oo asn — 00
that, P, a.s.,

1 < [ fdu
X .
Ni(n) gf( V53w

The proof is then completed by using the same result with f replaced by g. O
Corollary 13.30 Assume that the chain is recurrent irreducible. Then, for every
yekE,

(i) in the positive recurrent case,

n—1

1
Zl{xk:y} — u(y), as.
n k:0 n— o0

where  is the unique invariant probability measure;
(ii) in the null recurrent case,

-1
1 n
n kzo l{Xk=y} njgo 0, a.s.

In both cases, the convergence holds a.s. under Py for any x € E.

The corollary is an immediate consequence of Theorem 13.27. We just apply this
result with g = 1,y and f = 1, using the remark after the statement of the theorem
in the null recurrent case.

Definition 13.31 Let x be a recurrent point, and
L,={n=>0:0,kx,x)>0}.

The period of x (relative to Q) is the largest common divisor to L. It is denoted by
d(x).

Remark Since L, is closed under addition (Q, 4, (x, x) = O, (x, x) O (x, X)), the
subgroup generated by L, can be written in the formd(x)Z =Ly — Ly(={n—m:
n,m € Ly}).
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Proposition 13.32 Assume that the chain is recurrent irreducible.

(i) All points of E have the same period, which is called the period of the chain
and denoted by d.

(ii) The chain is called aperiodic if d = 1. In that case, for every x,y € E, there
exists an integer no > 0 such that Q,(x,y) > 0 for every n > ny.

Proof

(i) Letx,y € E. Since the chain is irreducible, there exist two integers n; and ny
such that O, (x,y) > 0 and Q,(y,x) > 0. But then, if n € L, we have
Qn2+n+n1 O,y > an()’a x)On(x, x)in (x,y) >0andthusny +n+ny €
Ly, which implies that Ly — Ly C Ly — Ly and thus d(y) is a divisor of d (x).
By symmetry, we get d(x) = d(y).

(i) Itis clearly enough to treat the case where y = x. Since d(x) = 1, we can find
two integers n1, m1 > 0 such that 1 =n; —m and

On, (x,x) >0, O, (x,x) > 0.

If m; = 0, then n1 = 1 and the result is obvious with ng = 0. If m{ > 1, then,
forevery j € {0, 1,...,m; — 1}, we have

Qm%Jrj(xv x) = an1+(m1—j)m1(xs x) > 0.

Since O, (x,x) > 0, we also get Qm%JrkmlH
k>0and j € {0,1,...,m — 1}, and finally we have for every j > 0,

(x,x) > 0 for every integers

Qm%ﬂ.(x,x) > 0.

O

Theorem 13.33 Assume that the chain is irreducible, positive recurrent and ape-
riodic, and let |1 denote the unique invariant probability measure. Then, for every
x €E,

D IP(Xy = y) = n()| — 0.
yeE

In particular, we have P, (X,, = y) — wu(y) asn — oo forevery x,y € E.

Proof The formula

O((x1, x2), (y1, ¥2)) = O(x1, y1) Q(x2, y2)

defines a stochastic matrix on £ x E, and we have

0, ((x1,x2), (¥1, ¥2)) = On(x1, y1) Qu(x2, ¥2)
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for every integer n > 1. Let (X}, X2)nez,» (P(x;,x2))(x1,x0)cExE) denote the
canonical Markov chain associated with Q. It is straightforward to verify that, under
P, .1, X} and X2 are two independent Markov chains with transition matrix Q
started at x1 and x, respectively.

We observe that Q is irreducible. Indeed, if (x1,x2), (y1,y2) € E X E,
Proposition 13.32(ii) gives the existence of two integers ny and ny such that
On(x1,y1) > 0 for every n > njy, and Q,(x2,y2) > O for every n > np. If
n > np V np, we have thus Q,, ((x1, x2), (y1, y2)) > 0.

Moreover, the product measure y ® w is invariant for Q:

> n)pE) QG y1)Q(x2, y2)

(x1,x2)€EEXE
=Y ux)QG1, y1) Y 1(x2)Q(x2, y2)
x1€E x2€E
= n(you(y2).

By Proposition 13.26, we get that the Markov chain (X},,Xﬁ) is positive
recurrent.
Letus fix x € E. Then, forevery y € E,

P (X, = y) — () = Ppugs, (X2 = y) — Pugs, (X} = y)
= Eues lpg=y) — Iix=y]-

Consider the stopping time 7 = inf{n > 0 : X,ll = Xﬁ}. The recurrence of the chain
(X,ll, X%) ensures that T < oo, Pugs, a.s. Then the preceding equality implies that,
forevery y € E,

P.Xy =y) —u(y) = E/L@(SX [1{T>n}(1{X%:y} - 1{X,‘,=y})]

n
+ 222 Euen 7y xixi—s A=y — i)
k=0 zeE

(13.7)

However, for every k € {0,1,...,n} and z € E, the Markov property at time k
gives

Eugs Lir—p x1=x2=o) L2 =y)] = Buws, [Li7—p x1ox2=)] Qn—k (2, ¥)

= Epuos, [Lir—p x1=x2 = Lixi=y) ]
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and thus the second term in the right-hand side of (13.7) is equal to 0. In this way,
we obtain that

D UIPXy =) — ul = Epues, Mrn (xa—yy — Lixi—y))]l
yeE yeE

< Z E,u.®5x [1{T>n}(1{X%:y} + I{X}lZ)’})]

yeE

=2Pugs, (T > n),
which tends to 0 as n — oo, since T < oo, Pygs, a.s. a

Remark The preceding proof is a good example of the so-called coupling method.
Roughly speaking, this method involves constructing two random variables, or two
random processes, with prescribed distributions, in such a way that they are almost
surely close, in some appropriate sense. Although this is not made explicit in the
argument, the underlying idea of the preceding proof is to construct the Markov
chain started from x and the same Markov chain started from its invariant probability
measure, in such a way that these two processes coincide after the (finite) stopping
time 7.

13.7 Martingales and Markov Chains

In this last section, we discuss some relations between Markov chains and martin-
gale theory. We consider again the canonical Markov chain with transition matrix

0.

Definition 13.34 A function f : E —> Ry is said to be Q-harmonic (resp. QO-
superharmonic) if, for every x € E,

fx)=0f(x)  (resp. f(x) = Qf (x)).

More generally, if F C E, we say that f is Q-harmonic on F (resp. Q-
superharmonic on F) if the property f(x) = Qf(x) (resp. f(x) = Qf(x)) holds
forevery x € F.

Remark We could more generally consider harmonic and superharmonic functions
of arbitrary sign, but in this book we limit ourselves to nonnegative functions.
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Proposition 13.35

(i) A function f : E —> R4 is Q-harmonic (resp. Q-superharmonic) if and
only if, for every x € E, the process (f(Xn))nez, is a martingale (resp. a
supermartingale) under Py, with respect to the filtration (§n)nez., -

(ii) Let F C E and G = E\F. Define the stopping time

T :=inf{n > 0: X,, € G}.

Then, if f is Q-harmonic (resp. if f is Q-superharmonic) on F, the process
(f Xuatg))nez, is a martingale (resp. a supermartingale) under Py, for every
x e F.

Proof
(i) Suppose that f is Q-harmonic. Then, by Proposition 13.3(i), for every n > 0,

Ei[fXnt1) 8] = Qf Xn) = f(Xa).

In particular, we have E,[f(X,)] = E;[f(Xo)] = f(x), hence f(X,) €
L' (P,), for every n € Z., and the preceding equality shows that (f (X,))nez,
is a martingale under P, (with respect to the filtration (§,)nez, ).

Conversely, suppose that f(X,,) is a martingale under P,. We immediately
get that

f @) =Ex[f(Xo)] = Ex[f(XD] = Of (x).

The case of a superharmonic function is treated in a similar manner.
(i) Suppose that f is Q-harmonic on F. Then, for every x € F andn > 0,

E [ f X)a1e) 180l = Ex [ f Kt 1) 17550y | 8nl + Ex [ f K1) 116 <n) |50l
= L7gon) Ex[f Knp ) 18] + fX75) Litg<n)
= Lzg>ny OF Xn) + [ (X16) L7620}
= Lzg=ny [ Xn) + f K1) 15 <m)
= fXuats)-
In the second equality, we noticed that f(X7;) 1i75<n) = fXrgan) 1i1g<n)
is §p-measurable. As in part (i), it follows from the last display that

E . [fXur15)] = f(x) < oo and that f(X;A7;) is a martingale. The case
where f is Q-superharmonic on F is treated similarly.
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Theorem 13.36 Let F be a nonempty proper subset of E and G = E\F. Let g :
G —> Ry be a bounded function.

(i)

The function
h(x) = Ex[8(X715) 115 <00} 15 xekE

is Q-harmonic on F.

(ii) Assume that Tg < 0o, Py a.s. for every x € F. Then the function h is the unique

bounded function on E that

e is Q-harmonic on F,
* coincides with g on G.

The case g = 1 is especially useful.

Corollary 13.37 Let G be a nonempty proper subset of E. The function x +>
P.(Tg < 00) is Q-harmonic on E\G.

Proof of Theorem 13.36

@

(ii)

We first notice that, if x € F, we have P, a.s.

8X715) {75 <00}y = 8(X75 0 61) 1{1500, <00} »

because, if wg ¢ G, the first point in the sequence (w1, w2, ...) that belongs
to G is the same as in the sequence (wp, w1, ...). Put differently, if U(w) =
8 (Xr5 (w)) 1415 (w)<o0)» We have U = U o 61, P, a.s. Hence, for every x € F,
Theorem 13.7 gives

h(x) = Ex[U] = Ex[U 0 01] = E;[Ex, [U]] = Ex[h(X1)] = Qh(x),

which shows that /# is Q-harmonic on F.

It is obvious that 2(x) = g(x) if x € G, and, by part (i), we know that & is
Q-harmonic on F. Let i’ be a bounded function that is Q-harmonic on F and
coincides with g on G. Let x € F. By Proposition 13.35, ¥, = h'(Xya715)
is a martingale under P,. This martingale is bounded and therefore uniformly
integrable, and converges to &' (X1,;) = g(X1;), Py a.s. By Theorem 12.28, we
have thus

W (x) = Ex[Y0] = Ex[Yool = Ex[g(X75)] = h(x).
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Examples

(a)

(b)

Let us consider the gambler’s ruin problem already discussed in Section 12.6.
We consider simple random walk on Z and an integer m > 2. We set

T=inf{n >0:X, <0orX, >m}=inf{n >0:X, ¢ F},

where FF = {1,2,...,m — 1}. Write G = Z\F as above. Define g(i) = 1 if
i >mand g(i) =0ifi < 0. Then Theorem 13.36 shows that the function

h(k) = Ex[¢X7)] =P (X7 = m), kel

is Q-harmonic on F. The property Qh(k) = h(k) for k € F holds if h(k) =
é(h(k — 1) + h(k 4+ 1)), or equivalently h(k) — h(k — 1) = h(k + 1) — h(k),
forevery k € F. Since h(k) = 1 if k > m and h(k) = 0 if k < 0, we easily get
that, foreveryk € F ={1,...,m — 1},

k
)= .

This formula was already obtained in Section 12.6 via a different method.
Discrete Dirichlet problem. Let F be a finite subset of Z¢. Define the boundary
doF by

AF :={yeZN\F:3axeF, |y—x|=1},

andset F = FUOF.

A function & defined on F is called discrete harmonic on F if, for every
x € F,the value h(x) of h at x is equal to its mean over the 2d nearest neighbors
of x. This is equivalent to saying that 4 is Q-harmonic on F, as defined in
Definition 13.34, if Q is the transition matrix of simple random walk on Z<:
Ox,x kej)= 21d forj =1,...,d, where (e, ..., eg) is the canonical basis
of RY. Note that Definition 13.34 requires & to be defined on Z¢ and not only
on F, but the values of i on Z?\ F are irrelevant to verify that & is Q-harmonic
on F.

Theorem 13.36 then yields the following result. For any nonnegative func-
tion g defined on 9 F, the unique function 4 : F — R such that:

e J is discrete harmonic on F,
* h(y) =g(y),Vy € oF,

is given by

h(x) = Ex[g(X7,,)] x €F,
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where P, refers to simple random walk on 74 started from x, and

Tyr = infln > 0: X, € 9F).

Harmonic and superharmonic functions provide criteria allowing one to decide
whether an irreducible Markov chain is recurrent or transient. We give one result in
this direction. Recall that superharmonic functions are always nonnegative for us.

Theorem 13.38 Assume that the chain is irreducible. Then it is transient if and only
if there exists a nonconstant Q-superharmonic function.

Proof Assume that the chain is recurrent, and let 2 be a (nonnegative) Q-
superharmonic function. Also let x,y € E. By Proposition 13.35, the process
(h(Xn))nez, is a nonnegative supermartingale under Py, and thus converges Py a.s.
Since the chain visits both x and y infinitely many times, h(X,,) takes both values
h(x) and A(y) infinitely many times, and it follows that A(x) = h(y). So, if the
chain is recurrent, any Q-superharmonic function is constant.

Conversely, assume that the chain is transient and fix x € E. Consider the
function h(y) = Py(T{x}; < 00). By Corollary 13.37, h is harmonic on E\{x}. But
sinceh < 1andh(x) = 1, we have also #(x) > Qh(x), and thus / is superharmonic
on E. Finally it is clear that % is not constant (if we had h(y) = 1 forevery y € E
an application of the Markov property at time 1 would show that P, (H, < c0) =1
and x would be recurrent). |

Example Let us consider the example given at the end of Section 13.5. For this
Markov chain, one immediately checks that the function

h(k):(l;p)k,keZJr

is Q-superharmonic when p > 1/2. The function /% is not constant when p > 1/2,
and so the chain is transient if p > 1/2. This argument complements the one given
at the end of Section 13.5, which showed positive recurrence when p < 1/2. When
p = 1/2, the chain is (null) recurrent: recurrence can be obtained by observing that
0,00,0) = Qn (0, 0), where Q denotes the transition matrix of simple random walk
on Z.
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13.8 Exercises

Exercise 13.1 Let £ and F be two countable sets and let f : E —> F be a
surjective map. Let (X;),ecz, be a Markov chain on E with transition matrix Q.
Assume that, for every a € F, and every x, x’ € E, the equality

Yo o= ) 0.y

yef~l@ yef @

holds whenever f(x) = f(x’). Show that (f(Xn))nez., is a Markov chain on F and
give its transition matrix.

Exercise 13.2 (Random Walk on the Binary Tree) Consider the countable set

o
E=Ji,2)%,
k=0

where we make the convention that {1, 2}° = {¥} consists of a single element §. An
element of E other than T is thus a k-tuple (i1, ..., ix), where i, ..., ik € {1, 2},
and we define 7w ((iy, ..., ix)) = (i1,...,ik—1) (=T when k = 1). We view E as a
graph whose edge setis A = {{x, 7 (x)} : x € E\{f}}. Prove that simple random
walk on this graph is transient. (Hint: Use the preceding exercise.)

Exercise 13.3 Let (X;)nez, be a simple random walk on Z, with Xo = 0. For
every k € Zy, set Ty = inf{n > 0 : X,, = k}. Prove that the random variables
Ty — Tk—1, k € N, are independent and identically distributed.

Exercise 13.4 Let S be a countable set, and let (G, G) be a measurable space. Let
(Zn)nen be a sequence of independent and identically distributed random variables
with valuesin G, and let ¢ : S x G —> § be a measurable function. Also fix x € S.
We define a random process (X;)nez, with values in S by induction, by setting
Xo = x and then, for every n > 0, X;,+1 = ¢ (X, Zy+1). Prove that (X;)nez, isa
Markov chain, and determine its transition matrix in terms of the distribution of the
random variables Z,,.

Exercise 13.5 Consider the Galton-Watson process (X}, ), <N of Section 13.2.4, and

assume that Xo = 1 and that the offspring distribution w satisfies ©(0) + (1) < 1.
Write m = Y oo, ke (k) for the mean of , and g for the generating function of w,

gr) =Y ukyr*, vrelo,1].
k=0
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(1) Verify that, for every n € N and r € [0, 1], E[r¥r] = gn(r), where g, is the
n-th iterate of g (g1 = g and g,4+1 = g 0 g, foreveryn € N).

(2) Set Tp = inf{n > 0 : X,, = 0}. Verify that P(Ty < 0c0) = lim,— 0 £, (0).

(3) Prove that P(Ty < 00) is the smallest solution of the equation g(f) = ¢ in the
interval [0, 1]. Verify that P(Tp < oo0) < 1 if and only m > 1.

Exercise 13.6 (Birth and Death Process) Let Q be the transition matrix on Z
that is determined by

Q(0,0) =ro, Q0,1) = po,

and, for every k > 1,

Ok, k = 1) =qi, Qk, k) =r, Qlk,k+1) = p,

where ro + po = 1 and gx + ¢ + px = 1 for every k > 1. We assume that p; > 0
for every j > 0 and g; > O for every j > 1. We consider the canonical Markov
chain associated with Q.

(1) Verify that the chain is irreducible and has a reversible measure unique up to a
multiplicative constant.
(2) Under the condition

o
Z pop1 - Pi—1

< 00,
o 41492 di

prove that the chain is positive recurrent.
(3) We suppose that p; = p for every k > 0 and g, = g for every k > 1, where
q > p > 0. Compute the quantities E;[ Hi] for every k > 0.

Exercise 13.7 Let N € N and let Q be the transition matrix on £ = {0, 1, ..., N}
defined by

0, j) = (7) (zlv)] (1 - ]’\'])ij, Vi, j €{0,1,...,N}.

In other words, Q(i,-) is the binomial B(N,i/N) distribution. Let k& €
{0,1,..., N} and let (X,),ez, be a Markov chain with transition matrix Q started
at Xo = k.

(1) Classify the states of (Xy),ez., -
(2) Verify that (X,),ez, is a martingale, which converges to a limit X, a.s. as
n — o0. Determine the law of X .
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Exercise 13.8 Let (S,)ycz, be a simple random walk on Z, with Sy = 0. For
k € Z\{0}, show that the expected value of the number of visits of k before the first
return to 0 is equal to 1.

Exercise 13.9 (Kolmogorov’s Criterion for Reversibility) Consider an irre-
ducible Markov chain on E with transition matrix Q. Prove that the chain has
a reversible measure if and only if the following two conditions hold.

* Forevery x, y € E, the property Q(x,y) > 0implies Q(y, x) > 0.
e For every finite sequence xo,x1,...,X, in E such that x, = xp and
Q(xj—1,x;) > O0foreveryi € {1,...,n},

ﬁ O(xi, xi—1) _ 1
Oxi—1,x;)

i=1

Exercise 13.10 (#-Transform) Let Q be a transition matrix on a countable space
E,andlet h : E — R, be a nonnegative function on E. We assume that the set
F ={x € E : h(x) > 0} is not empty and that / is Q-harmonic on F'.

(1) Foreveryx,y e F,set

h(y)

Q(x,y) = hx)

Q(x, y).

Verify that Q’ is a transition matrix on F.

(2) Fix a € F, and suppose that (X,),ecz, is a Markov chain in E with transition
matrix Q, such that Xo = a, and (¥,)ez, is a Markov chain in F with
transition matrix Q’, such that Yo = a. Prove that, for every integer n > 1
and every function F : E"*! — R,

1
E[F (Yo, Y1,...,Y))] = ha)

where T = inf{k > 0: X} ¢ F}.

(3) We now assume that Q is the transition matrix of simple random walk on Z.
Verify that the assumptions are satisfied when (i) = i v 0 and F = N, and
compute Q’. Retain the assumptions and notation of question (2) (in particular
a € N is fixed), and for every integer N > a set

E[1{r5n) h(Xy) F(Xo, X1, ..., Xu)],

ty=inf{n >0: X, =N}, oy=inf{n >0:Y, = N}.

Verify that oy < o0 a.s., and that the law of (Yp, Y1, ..., Y5, ) coincides with
the conditional distribution of (Xo, X1, ..., X¢y) under P(: |ty < T).
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Exercise 13.11 Let (Y,),cn be a sequence of independent and identically dis-
tributed random variables with values in N. We assume that:

e a=E[Y] < o0;
* the greatest common divisor of {k > 1 : P(Y; = k) > 0O} is 1.

We thendefine Z; =Y, Zo=Y1+Y2,...,Zr =Y + - -+ Y, ..., and we set
Xo = 0 and, for every integer n > 0,

Xy = Zi) —n, where k(n) = min{k > 1: Z; > n}.

(1) Verify that (X,),ez, is an irreducible Markov chain with values in a subset
of Z4 to be determined. Prove that this Markov chain is positive recurrent and
aperiodic.

(2) Consider the random set of integers Z = {Z1, Z3, Z3, .. .}. Prove that

1
lim P(n € 2) =
n—oo a
Exercise 13.12 We consider a random walk (S;),cz, on Z starting from 0, with

jump distribution u satisfying the following two properties:

e u(0) < 1and u(k) =0forevery k < —1;
* D ez lklpn(k) <ooand Yz ku(k) = 0.

(1) Verify that the Markov chain (S,)ncz, is recurrent and irreducible.
2) Let H =inf{ln > 1:S, =0} and R = inf{n > 1 : S, > 0}. Prove that, for
every k € Z,

H-1
E[ Z I{Sn:k}] = 1
n=0
and infer that we have also for every integer k < 0,
R-1
E[ Z I{Sn=k}] =1.
n=0
(3) Let p € Z. Verify that

[e¢)
P(Sk = p) = ) Ellju<r) s, =p)]
n=0



13.8 Exercises 347

and using question (2) conclude that

e¢]

P(Sk = p) = ) n(k).

k=p

Exercise 13.13 A student owns three books numbered 1,2,3, which are stored on a
shelf. Each morning, the student chooses at random one of the books, in such a way
that the probability that the book i is chosen is «; > 0, and the choices are made
independently every day. At the end of the day, the student places the chosen book
back on the shelf, to the left of the other two. Suppose that on the morning of the
first day the books stand in the order 1,2,3 from left to right on the shelf, and for
every n > 1, let p, be the probability that the books are in the same order on the
morning of the n-th day. Compute the limit of p, asn — oo.

Exercise 13.14 Suppose that we move a knight randomly on a chess board
according to the following rules. Initially, the knight stands on one of the corners of
the chess board. Then, at each step, the knight chooses one of the possible moves
at random with equal probabilities, independently of what happened before. (Recall
that a chess board is a square board of eight rows and eight columns, resulting in 64
squares, and that the knight’s moves form an “L” shape, two squares horizontally
and one square vertically, or two squares vertically and one square horizontally.)
Compute the expected value of the number of steps before the knight comes back to
its starting point. (Answer: 168).



Chapter 14 )
Brownian Motion Check for

This chapter is devoted to the study of Brownian motion, which, together with the
Poisson process studied in Chapter 9, is one of the most important continuous-
time random processes. We motivate the definition of Brownian motion from
an approximation by (discrete-time) random walks, which is reminiscent of the
physical interpretation of the phenomenon first observed by Brown. We then provide
a detailed construction of a Brownian motion (B;);>0, where a key step is the
continuity of the sample paths ¢+ — B;(w) for every w € 2. This construction
leads to the definition of the Wiener measure or law of Brownian motion, which is
a probability measure on the space of all continuous functions from R into R (or
into R? in the d-dimensional case). Simple considerations relying on a zero-one law
for Brownian motion yield several remarkable almost sure properties of Brownian
sample paths. In a way similar to Markov chains, Brownian motion satisfies a strong
Markov property, which is very useful in explicit calculations of distributions. In
the last part of the chapter, we discuss the close links between Brownian motion
and harmonic functions on R?. Brownian motion provides an explicit formula for
the solution of the classical Dirichlet problem, which consists in finding a harmonic
function in a domain with a prescribed boundary condition. As a consequence, the
Poisson kernel of a ball exactly corresponds to the distribution of the first exit point
from the ball by Brownian motion. The relations with harmonic functions are also
useful to study various properties of multidimensional Brownian motion, such as
recurrence in dimension two or transience in higher dimensions.

14.1 Brownian Motion as a Limit of Random Walks

The physical explanation of Brownian motion justifies the irregular and unpre-
dictable displacement of a Brownian particle by the numerous collisions of this
particle with the molecules of the ambient medium, which produce continual
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changes of direction. From a mathematical perspective, this suggests that we
consider the evolution in discrete time of a point particle that moves on the lattice Z¢
and at each time n € Z makes a step in a direction chosen at random independently
of the past. In other words, we consider the model of a random walk on 74, which
we already discussed in Chapter 13. Our goal in this section is to introduce the
definition of Brownian motion as the limit of random walks suitably rescaled in
time and space. The results of this section are not used in the remaining part of the
chapter, but serve as a strong motivation for our study.

Let (Sy)nez, be a random walk on 74 started from 0. This means that Sy = 0
and, for everyn € N,

Sh="1+-+¥,

where the random variables Y;, Y», ... take values in 74 and are independent and
identically distributed with law p. We assume that w satisfies the following two
properties:

© > klu(k) < oo, and, forevery i, j € {1,....d},

kezd
o-ifi =],
3 kikj k) = {0 ifi7é{ (14.1)
kezd /
where o > 0 is a constant and we write k = (k1, ..., kg) fork € Zd;
. Z ku(k) = 0 (u is centered).
keZd

Simple random walk on Z satisfies these assumptions, with > = 1/d, and there
are many other examples. Assumption (14.1) is equivalent to E[(§ - Y1)2] = 62|§ |2,
for every £ € R?, which means informally that the random walk moves at the same
speed in all directions (isotropy condition).

We are interested in the long-time behavior of the function n +— §,. By the
multidimensional central limit theorem (Theorem 10.18), we already know that
n~1/2s, converges in distribution to a centered Gaussian vector with covariance
matrix o2Id, where Id denotes the identity matrix. In view of deriving more
information, we set, for every n € N and every real ¢ > 0,

1
Jn

where we recall that | x | denotes the integer part of x.

SP = S,
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Proposition 14.1 For every choice of the integer p > 1 and of the real numbers
0=1 <t <--- <tp wehave

(S, s, ... S(")) — (U1, U2, ..., Up)

tp
where the distribution of the limiting random vector (U, Ua, ..., Up) can be
characterized as follows:

* the random variables Uy, Uy — Uy, ..., U, — Up_1 are independent;
e forevery j € {1,...,p}, Uj — Uj_1 is a centered Gaussian vector with
covariance matrix 02(t i — tj—1)Id (we write Uy = 0 by convention,).

Remark 1t is easy to write down an explicit formula for the density of the limiting
distribution. The density of U; — U;_1 is paz(tj,,iil)(x), where, for every a > 0,

1 x| d
Pa)= )i exp(— 9 ) Vx e RY, (14.2)

is the density of the centered Gaussian vector with covariance matrix a Id (recall
from Proposition 11.12 that the components of this vector are independent Gaussian
N (0, a) random variables, so that the preceding formula for p, follows from
Corollary 9.6). Using the independence of Uy, Uo — Uy, ..., Up —U,—1, we get that
the density of (Ui, Uz — Uy, ..., U, — Up—1) is the function g : (Rd)p — R4
defined by

8OX1, s Xp) = P2y (5D P2y (¥2) - P2,y (Xp)s X1, xp € RE

By a straightforward change of variables, the density of (Uy, Uz, ..., Up) is

SOL - yp) =80 Y2 = Yoo Yp — Yp—1)
= Po2t, VD Po2(ty—1y (V2 — Y1) -+ Paz(tp—tp,l)(yp = Yp-1)-

Proof By Theorem 10.13, it is enough to verify that, for every &;,...,§, € R4,

on (S0 58)] e fen X v)]

Via a simple linear transformation this is equivalent to verifying that, for every
Rd
771 ERRIEIRIEY n P € )

E[exp(iip:nj-(St(n) S,(;’)l))] HXOE[exp(iXP:nj.(Uj—Ujl))]. (14.3)
=1

j=1

T Mm
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Let us prove (14.3). Thanks to the independence of Uy, U — Uy, ..., Up—Up_4
and to formula (10.5), we know that

[GXP( Zi: qu))] = ﬁE[eXP (i nj-Uj = Uj—1))]

i=1

— e (- i o~2|nj|2(t2j - tH))_

j=1
On the other hand,

1 Lntjj

(n) (n) _
S —S5h = Jn Z Ye.

k=[ntj_y]+1

and, using the grouping by blocks principle of Section 9.2, it follows that, for every
fixed n, the random variables St(;l) — St(;ljl, 1 < j < p, are independent. Moreover,

for every j, S,(;l) - S,(;i)l has the same distribution as

Lg :\/Lij—Lmj,lj 1 P
\/I’l [ntj]—Intj—1] \/I’l \/Lnth_Lntj_1J [ntj]—|ntj_1]-

Thanks to the multidimensional central limit theorem (Theorem 10.18), and using
the easy fact stated in Exercise 10.9, we get that S(") S( ") , converges in distribution

to \/tj —tj—1 N asn — oo, where N is a centered d- dlmensmnal Gaussian vector
with covariance matrix o 2Id. Consequently, for every fixed j € {1,..., p},

E[exp (i nj- (S(") (J") ))] = Elexp(iy/tj — tj—1nj - N)]

2,12
_ ot —tj-1)
_eXp( 2 )

Together with the independence of the random variables St(j") St(j")l, 1<j<p,
this leads to the desired convergence (14.3). |

We now turn to the definition of Brownian motion. In this definition, Brownian
motion is a (continuous-time) random process with values in R4, that is, a collection
(Br)t>0 of random variables with values in R4 indexed byt e Ry.

Definition 14.2 A random process (B;);>o with values in R4 defined on a proba-
bility space (£2, A, P) is a d-dimensional Brownian motion started from O if:

(P1) We have By = 0 a.s. and, for every choice of the integer p > 1 and of 0 =
fo <ty <--- < tp, the random variables B, By, — By, ..., Btp — B,pfl are
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independent and, for every j € {1, ..., p}, B,,. — B,,.fl is a centered Gaussian
vector with covariance matrix (¢; — ¢;_1)Id.
(P2) For every w € £2, the function ¢ — B;(w) is continuous.

We emphasize that the existence of a random process satisfying both properties
(P1) and (P2) is not obvious, but will be established below.

The functions ¢ +— B;(w) (indexed by the parameter w € £2) are called the
sample paths of B, and property (P2) is often stated by saying that Brownian motion
has continuous sample paths.

Assuming the existence of Brownian motion, we can reformulate Proposi-
tion 14.1 by saying that, for every choice of t; < --- < 1,

(d)
v ,...,S,(p"))n:; (0B, 0By, ..., 0By).
Brownian motion thus appears as a continuous limit of suitably rescaled discrete
random walks. As it was explained in the remark following Proposition 14.1, the
distribution of the vector (B, By, , .. ., B,p) is given by

P((By. B Byy) € A)
= / PuODPo—6 (2 = 1) - Pry—t, ., (Yp — Yp—1) dy1...dyp, (14.4)
A

for every Borel subset A of (R%)?, where the functions Pa(x) are defined in (14.2).
Formula (14.4) gives the finite-dimensional marginal distributions of Brownian
motion. This should be compared with the analogous result for the Poisson process
derived at the end of Chapter 9.

14.2 The Construction of Brownian Motion

We now state the basic existence result for Brownian motion.

Theorem 14.3 Brownian motion exists. In other words, on a suitable probability
space (82, A,P), we can construct a collection (B;);=0 of random variables
satisfying both properties (P1) and (P2) of Definition 14.2.

Proof We first consider the case d = 1 (corresponding to linear Brownian motion),
and in a first step we will construct the collection (B;):c(0,1]- We choose the
probability space (£2, A, P) so that we can construct a sequence of independent
Gaussian N (0, 1) random variables on this space (see Section 9.4).
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Let us start by introducing the Haar functions, which are real functions defined
on the interval [0, 1). We first set

ho(t) =1, Vtel0,1)
and then, for every integer n > 0 and forevery k € {0, 1,...,2" — 1},

hy () =2"21; 2k+})(t)—2"/21[2k+ w2y (1), Vi €0, 1).

1
on+1°on+ on+1pn+l

These functions belong to the Hilbert space L2([0, 1), B([0, 1)), 1) where we recall
that A denotes Lebesgue measure. Furthermore, one easily verifies that ||hgll2 =
kX1, = 1, where ||h]2 refers to the L?-norm, and the functions ho, k% are
orthogonal in L2. Hence the collection of Haar functions,

(ho, (hﬁ)nzo,oggznq) (14.5)

forms an orthonormal system in L2([0, 1), B([0, 1)), ) (see the Appendix below for
definitions). This orthonormal system is in fact an orthonormal basis. Indeed, it is
easy to verify that a step function f on [0, 1) such that there exists an integern € N
with the property that f is constant on every interval of the form [(i — 1)277,i27"),
1 < i < 2", must be a linear combination of the Haar functions, and on the other
hand, the set of all such step functions is dense in L2([0, 1), B([0, 1)), 1) (note
that any continuous function with compact support on [0, 1) can be approximated
uniformly on [0, 1) by step functions of this type, and use Theorem 4.8).

Write (f, g) = fol f()g(t)dr for the scalar product in L2([0, 1), B([0, 1)), ).
Then, for every f € L*([0, 1), B([0, 1)), A) we have

oo 2"'—1

= hodho+Y D (f. hE)hE,

n=0 k=0

where the series converges in L? (Theorem A.5).
On the other hand, we may consider a countable collection

(No, (N,]f)nzo,()gkgzn—l)

of independent Gaussian A (0, 1) random variables defined on our probability space
(£2, A, P). One immediately verifies that this collection forms an orthonormal sys-
tem in the Hilbert space L%($2, A, P) (orthogonality follows from independence).
By standard Hilbert space theory (Proposition A.6), there exists a linear isometric
mapping Z from L2([0, 1), B([0, 1)), A) into L%(£2, A, P) such that Z(hg) = No
and I(h’;) = N,’f foreveryn > 0 and 0 < k < 2" — 1. More precisely, for every
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f € L2([0, 1), B([0, 1)), 1),

oo 2"—1

I(f) = (f-ho)No+ Y Y (f.hE)NE,

n=0 k=0

where the series converges in L?(£2, A, ). We note that

EIZ(f)?] = /13

by the isometry property, and that E[Z(f)] = 0 since all random variables Ny, N,’f
are centered. Moreover the next lemma will show that Z( f) is a (centered) Gaussian
random variable.

Lemma 14.4 Let (Uy) N be a sequence of Gaussian (real) random variables that
converges to U in L?. Then U is also Gaussian.

Proof Let m,, = E[U,] and a,% = var(U,). The Lz-convergence ensures that
m, —> m = E[U] and onz —> ¢2 = var(U) as n — oo. However, since the
L2-convergence implies the convergence in distribution, we have also, for every
§ eR,

(MmE=0iE?/2 _ JiEUny s RV

n—0o0
which shows that the characteristic function of U is
E[eiw] _ eimg—azsz/z

and thus U is distributed according to N (m, o?). |

Let f € L2([0, 1), B([0, 1)), A). Writing

m 2"—1
7(f) = Tim ((fho)No+ Y D (L HONS), in L2,
n=0 k=0

and using the fact that a linear combination of independent Gaussian variables is
still Gaussian, we deduce from Lemma 14.4 that Z( f) is Gaussian N'(0, || f ||%). We
also note that, if f, f’ € L2([0, 1), B([0, 1)), A),

cov(Z(f), Z(f")) = EIZ(NHI(f = (f. [

by the isometry property.
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We then set, for every ¢ € [0, 1],
B, =1Z(1po,p).

In particular, By = Z(0) = 0 a.s.
Let us first verify that (B;);c[0,1] satisfies property (P1) (restricted to times
belonging to [0,1]). Fix 0 = 19 < 11 < --- < 1, < 1. By linearity, we have

B; — B;_, = I(llfi—l,fi))
whichis N'(0, t; —t;_1) distributed by the previous observations. Moreover, if i # j,

COV(BI‘,' - Bt,;] s Btj - Btjfl) = ]E[(Btl - Btifl)(Btj - Btjfl)]
= (g1 l[tj—lstj)>
=0.

It is easy to verify that (B, By, — By, ..., Btp — B,pfl) is a Gaussian vector: if
AL, hp €R,

14 14
Z)‘/(ij — By )= I(Z)‘fllf.f—wn)
j=1 j=1

is a Gaussian random variable By Proposition 11.12, the fact that the covariance
matrix (cov(B; — By,_,, B,J. — B,H)),-, j=1,...,p 1s diagonal implies that the random
variables By, By, — By, ..., Btp — B,pfl, are independent, which completes the
proof of (P1).

We now need to establish the continuity property (P2) (recall that, for the
moment, we restrict our attention to ¢ € [0, 1]). At the present stage, for every
t € [0,1], B = Z(1jp,)) is defined as an element of L2(.Q, A, P) and thus as an
equivalence class of random variables which are almost surely equal. For (P2) to be
meaningful, it is necessary to select a representative in this equivalence class, for
each ¢ € [0, 1] (the selection of such a representative did not matter for (P1) but it
does for (P2)). To this end, we will study the series defining B; in a more precise
manner. We first introduce the functions defined on the interval [0, 1] by

go(®) = (Ljo,1), ho) =1t

t
gk = (0.0, hh) =/ R (s)ds, forn >0, 0 <k <2"—1.
0
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By construction, for every ¢ € [0, 1],

oo 2"—1

B, =TI(ljps) =tNo+ Y Y gk(t)N} (14.6)
n=0 k=0

where the series converges in L>(£2, A, P).
For every integer m > 0 and every w € §2, set

m 2"—1

B (@) = tNo(@) + »_ Y gk(t)Nf(w). Vi elo,1]. (14.7)
n=0 k=0

Note that ¢t Bt(m)(a)) is continuous for every w € 2.

Claim There exists a measurable set A with P(A) = 0, such that, for every w € A€,
the function ¢ — Bt(m)(a)) converges uniformly on [0, 1] as m — oo to a limiting
function denoted by ¢ — B/ (w).

Assuming that the claim is proved, we also define B (w) = O for every ¢ €
[0, 1] when w € A. In this way, B/ (w) is obtained as an almost sure limit, which
must coincide with the L2-limit in (14.6). Thus our definition of B; (w) will give an
element of the equivalence class of Z(1o,;)) as desired (in other words, B, = B;
a.s.), but we have also obtained that ¢ — B/ (w) is continuous since a uniform limit
of continuous functions is continuous (of course if w € A the desired continuity is
trivial).

To prove our claim, we observe that 0 < gﬁ < 27"< and that, for every fixed
n, the functions gﬁ ,0 < k < 2" — 1 have disjoint supports (gﬁ () > 0 only if
k27" <t < (k4 1)27"). Hence, for every n > 0,

n/2

2"—1
sup ‘ 3 g’,;(t)N,’;‘ <272 sup |NK|. (14.8)
ref0.11' =5 0<k<21—1

Lemma 14.5 If N is N (0, 1) distributed, we have for every a > 1,
P(N| 2 a) <e @/

Proof We have

o0 00
rvza= 2 [Taetne 2o[Tatens 2 ooen,
T Ja T Ja a av/2m
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Since all variables N,’,‘ are NV'(0, 1) distributed, we can use the lemma to bound

21

]P( sup |N’]l(| > 27!/4) < Z P(lN’]lcl - 2n/4) < on exp(_z(n/Z)_l).
0<k<27—1 =0

Setting

A, = ’ sup |N,]f| > 2"/4}
0<k<27—1

We deduce from the Borel-Cantelli lemma (Lemma 9.3) and the preceding bound
that

P(limsup A,) = 0.

We set A = limsup A,, so that P(A) = 0 and, on the other hand, if ® ¢ A, we have
for every large enough n,

sup  |NK| <2n/4
0<k<2n—1

and thus, by (14.8),

2"—1

sup ‘ Z gn(t)Nk‘ <4
1€[0,1]

which implies the desired uniform convergence of the functions ¢ + Bt(m) defined
in (14.7). This completes the verification of our claim, and we conclude that the
collection (B;)¢[0,17 satisfies both (P1) and (P2) (restricted to the time interval
(0, 1D).

It remains to get rid of the restriction to r € [0, 1], and to generalize the
construction in any dimension d. In a first step, we consider independent collections
(Bt(l)),e[o,l], (Bt(z)),e[o,l], etc. constructed as above: for each of these collections,
we use a sequence of independent Gaussian N (0, 1) random variables which is
independent of the sequences used previously (to do this we need only countably
many independent Gaussian A(0, 1) random variables). We then set, for every
t>0,

Bi=B"+BP +...+B® + B Y ifrekk+1).

It is straightforward to verify that (B;);>¢ satisfies properties (P1) and (P2) in
dimension one.
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Finally, in dimension d > 2, we just have to consider d independent Brownian
motions in dimension one (B,l)tzo, R (Btd )r>0 (again, it is enough to have
countably many independent A (0, 1) random variables on our probability space)
and we set

B, = (B!, B%,....BY)

forevery t € R.. The verification of (P1) and (P2) is again easy, and this completes
the proof of the theorem. O

If x € RY a random process (B;);>0 is called a (d-dimensional) Brownian
motion started from x if (B; — x);>0 is a (d-dimensional) Brownian motion started
from 0.

14.3 The Wiener Measure

Let C(R, R?) denote the space of all continuous functions from R into R¢. We
equip C(R,, RY) with the o-field C defined as the smallest o-field for which the
coordinate mappings w — w(¢), from C(R4, R) into R, are measurable, for every
t e ]RJr.

Lemma 14.6 The o-field C coincides with the Borel o-field when C(R,, R?) is
endowed with the topology of uniform convergence on every compact set.

Proof Write B for the Borel o-field associated with the topology of uniform
convergence on every compact set. The fact that C C B is immediate since the
coordinate mappings are continuous hence B-measurable. Conversely, a distance
defining the topology on C (R, R?) is given by

D(w,w) = Zz*n sup (Jjw(t) — W' (t)| A 1).

=1 0<t<n

Let us fix wo € C(R, Rd). Since, for every w € C(R, Rd),

sup (lw(@) —wo()| A1) = sup (lw() —wo()| A D),
te[0,n] te[0,n]NQ

and a supremum of countably many measurable functions is measurable, we get that
the mapping w — d(wg, w) is C-measurable. It follows that balls of C (R, R?) are
C-measurable. Finally, since C (R, R?) equipped with the distance D is separable,
any open set is the union of a countable collection of balls and is thus C-measurable.
This implies that B C C. O
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Definition 14.7 Let (B;);>0 be a d-dimensional Brownian motion started at 0,
defined on a probability space (£2, A, P). The (d-dimensional) Wiener measure is
the probability measure Py on (C (R4, R?), C), which is defined as the pushforward
of P(dw) under the mapping

o> (t — Bi(w))

from £2 into C (R4, RY).

Write @ for the mapping considered in the definition. For this definition to be
meaningful, we of course need @ to be measurable. However, the same argument
as in the proof of Lemma 13.5 shows that this measurability property holds if (and
only if) the composition of @ with any of the coordinate mappings w +— w(Z) is
measurable, and this is immediate since these compositions are the random variables
B;.

The previous definition makes sense because it does not depend on the choice
of the Brownian motion B (nor on the underlying probability space on which this
Brownian motion is defined). Indeed, for any choiceof 0 = 1) <, < --- <1, we
have, for every Borel subsets Ag, A1, ..., Ap of RY,

Py({w € CR4. R : w(tp) € A, W(t1) € Ar.....w(ty) € Ap))
- ]P)(Bt() (S A(), Bt] (S Al, ceey Bl‘p € A[))

=14,(0) Pr(YDPo—1 (02 = Y1) Pry—t, . (Yp — yp—1) dy1...dyp,

Apx-xAp

by formula (14.4), which holds for any Brownian motion B (this is just a
reformulation of (P1)). An application of Corollary 1.19 shows that a probability
measure on C (R, R?) is characterized by its values on the “cylinder sets” of the
form

{w e CRy,RY) - w(tg) € Ag, W(t1) € Ay, ..., W(t,) € Ap}.

It follows that Py is uniquely determined independently of the choice of the
Brownian motion B. We may and will often see a Brownian motion B as the random
variable w +— (¢ +— B;(w)) with values in C(R, R?), which is considered in
Definition 14.7. From this point of view, the Wiener measure is just the law of
Brownian motion (started at 0). The fact that this law is uniquely defined also means
that, if B’ is another Brownian motion (started at 0) then, for any A € C,

P((B;),Zo c A) — Py(A) = ]P’((B,)tzo c A), (14.9)

so that, in particular, any almost sure property that holds for a given Brownian
motion holds automatically for any other Brownian motion.
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If x € R?, we also write P,(dw) for the pushforward of Py(dw) under the
translation w — x + w. This is the law of Brownian motion started at x. In a
way similar to Chapter 13, E, will be used to denote the expectation under P, .

The Canonical Construction of Brownian Motion In a way very similar to
the case of Markov chains studied in the previous chapter, we will now present
a canonical construction of Brownian motion involving a special choice of the
probability space and of the process (B;);>0. This canonical construction allows
us to deal simultaneously with all possible starting points just by changing the
underlying probability measure. This will also enable us to write the strong Markov
property in a form that is particularly convenient for our applications to harmonic
functions (see Theorem 14.19 below).

We set @ = C (R, R?) (without risk of confusion, we use the same notation as
in the chapter on Markov chains for a different space!). We equip € with the o-field
C and the probability measure Py. We then set, for every 1 > 0,

B;(w) =w(), Vwe Q.

The collection (B;);>0, which is defined on the probability space (2, C, Pp), is a
Brownian motion started from 0. Notice that property (P2) is here obvious. Property
(P1) follows from the formula given above for

Py({w € C(R4, RY) : w(to) € Ag, w(ty) € Ay, ..., w(tp) € Ap)).

Similarly, under Py, (B;);>0 is a Brownian motion started from x.

14.4 First Properties of Brownian Motion

In this section, we consider a d-dimensional Brownian motion B started at 0. For
every t > 0, we write F; = o(B;,0 < r < t) for the o-field generated by the
random variables B, 0 < r < t. We also write Foo = 0 (B;,t > 0). The collection
(F1)r>0 is a (continuous-time) filtration—meaning that it is an increasing collection
of o-fields indexed by R .

Proposition 14.8

(i) Let ¢ be a vector isometry of R4, then (¢(Bt))i>0 is also a Brownian motion
(in particular, — B is a Brownian motion).
(ii) For every y > 0, the process (B!),>o defined by B! = )I/Byzt is also a
Brownian motion (scaling invariance).
(iii) For every s > 0, the process (B,(S))tzo defined by B,(S) = Bgy+ — Bs is
also a Brownian motion, and the collection (Bt(s))tzo is independent of Fy
(simple Markov property).
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Remarks

(1) All these properties remain trivially valid if B is a Brownian motion started at
x # 0.

(il)) One may compare (iii) with the analogous property for the Poisson process
(Theorem 9.21).

Proof (i) and (ii) are very easy, by checking that both ¢ (B;) and B/ satisfy property
(P1) — property (P2) is obvious. For (i), note that, if X is a d-dimensional Gaussian
vector with covariance matrix a Id, then ¢(X) has the same distribution as X, as
it can be seen by writing down the characteristic function of ¢(X). As for (iii),
the fact that B is a Brownian motion is also immediate and the independence

property can be derived as follows. For every choice of 11 < #, < --- < , and
rp <ry <--- <rqg <s, property (P1) implies that the vector (Bt(f), R Bf;)) is
independent of (By,, ..., By,). Using Proposition 9.7 (or the remark at the end of

Section 9.2), we infer that the collection (Bt(s)) >0 is independent of (B, )o<,<s. O

Theorem 14.9 (Blumenthal’s Zero-One Law) Let

Foy =) F

s>0

Then, for every A € Fo4, we have P(A) =0 or 1.

Proof Let A € Foy and t1,...,t, > 0. For ¢ > 0 small enough (smaller
than min{z; : 1 < i < p}) the simple Markov property in Proposition 14.8 (iii)
implies that (B;, — B, ..., B:, — B:) is independent of F;, and a fortiori of Fq.

Consequently, for every bounded continuous function f on (R9)?,
E(14 f(By — Be, ..., Bi, — B)] = P(A)E[f(By, — Be, ..., Bi, — Bo)l.
By letting ¢ — 0, we get

]E[IA f(Bl‘lv cees Btp)] = ]P)(A) ]E[f(Btl 9 e ey Btp)]v

and thus (By, .. ., B,p) is independent of F¢.. Thanks to Proposition 9.7, it follows
that F is independent of Foy. In particular, o4 C F is independent of itself,
so that P(A) = P(A N A) = P(A)? forevery A € Fo.. O

In the next two corollaries, we consider the case d = 1.

Corollary 14.10 (d = 1) We have, a.s. for every ¢ > 0,

sup B > 0, inf Bg <O.

0<s<e 0<s<e
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Foreverya € R, set T, = inf{t > 0: B; = a} (inf & = 00). Then
as., YVaeR, T, < oo.
Consequently, we have a.s.

limsup B; = 400, liminf B; = —o0.
t—00 1—00

Remark 1t is not a priori obvious that supy.,., By is measurable, since this is an
uncountable supremum of measurable functions. However, since we know that
the functions + +— B;(w) are continuous, the latter supremum is also equal
to Sup,¢(o .)nQ Bs, and is therefore measurable as the supremum of a countable
collection of measurable functions. Alternatively we could observe that we are
considering the composition of the two functions w +— (¢t — B;(w)) and w +—
SUP <<, W(#), which are both measurable, the second one thanks to Lemma 14.6.

Proof Fix a decreasing sequence (g)) pen of positive reals converging to 0, and set

A:ﬂ{ sup B; > 0.

peN O0<s=<ep

Lett > 0 and po € N such that ¢, < t. Since the intersection defining A is
decreasing, we have also

A= ﬂ’ sup BS>0],

P>po O<s=<e¢p

which is F;-measurable. We conclude that A is F;-measurable for every # > 0 and
thus A is Fp4-measurable. On the other hand,

P(A) = lim ¢]P’< sup B >0),

p=00 0<s<e,

and

1
]P’( sup By > 0) > P(B:, > 0) = .

O0<s=<ep

since By, is N (0, €)-distributed and thus has a symmetric density. This shows that
P(A) > 1/2. From Theorem 14.9, we get that P(A) = 1, and it follows that

a.s., Ve > 0, sup B > 0.

0<s<e
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The assertion about info<s<, B is obtained by replacing B by —B.
We then write

1=]P’< sup Bs>0):%if(}T]P< sup BS>8),

0<s<l1 0<s<1

and we observe that, thanks to the scaling invariance property (Proposition 14.8 (ii))
with y =6,

]P’( sup B > 8) =P( sup B;s > 1) =]P’< sup By > 1)
0=<s<1 0<s<1/82 0<s5<1/8§2

where the last equality holds because the law of Brownian motion is uniquely
defined, see the remarks following Definition 14.7 and in particular formula (14.9).
By letting § — 0, we get

]P(supBS > 1) = lim ¢} ]P’( sup By > 1) =1.
520 810 0<s<1/82

Another scaling argument then shows that, for every A > 0,

]P(supBS > A) =1

s>0

and replacing B by —B we also get

]P’(infBS < —A) — 1.

s>0

The last assertions of the corollary easily follow. For the last one, we observe that a
continuous function f : Ry — R takes all real values only if lim sup, , , o, f(¢) =
400 and liminf,_, o, f(¢) = —o00. O

Corollary 14.11 (d = 1) Almost surely, the function t — B; is not monotone on
any non-trivial interval.

Proof From the first assertion of Corollary 14.10 and the simple Markov property
in Proposition 14.8 (iii), we immediately get that a.s. for every rational g € Q., for
every ¢ > 0,

sup By > B, inf B, < By.
q<t<q-+e q=t=q-+e

The desired result follows. Notice that we restricted ourselves to rational values of
q in order to discard a countable union of sets of zero probability (and in fact the
stated result would fail if we would consider all real values of g). O
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B,

i ol | t

Fig. 14.1 Simulation of the graph of a linear Brownian motion

Other properties related to the irregularity of Brownian sample paths will be
found in the exercises below. Figure 14.1 gives a rough idea of what the graph of a
linear Brownian motion may look like.

14.5 The Strong Markov Property

Our next goal is to extend the simple Markov property (Proposition 14.8 (iii)) to
the case where the deterministic time s is replaced by a random time 7'. In a way
very similar to the case of Markov chains (cf. Section 13.3), the admissible random
times are the stopping times, which we need to define in the continuous-time setting
of this chapter.

In this section, B is a d-dimensional Brownian motion started at x € RY. We
use the same notation /; = 0(B;,0 < r < t)and Fooc = 0(B;,t > 0) as in the
previous section.

Definition 14.12 A random variable 7" with values in [0, co] is a stopping time (of
the filtration (F;);>0) if {T <t} € F;, forevery t > 0.

If T is a stopping time, then, for every ¢ > 0,

r<n= {J (r=q

q€QN[0,7)

is also in F;, and consequently {T = t} = {T < t}]\{T < t} € F;. It also follows
from the definition that a stopping time is F.-measurable. As in the discrete-time
setting of Chapter 12, one easily verifies that S A T is a stopping time if S and T
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are both stopping times. Since constant times are obviously stopping times, we get
that T A ¢ is a stopping time, for any stopping time 7 and ¢ > 0. Similarly, it is
straightforward to verify that T 4 ¢ is a stopping time.

Example In dimensiond = 1, T, = inf{t > 0 : B; = a} is a stopping time. Indeed,

T, <1} = {reé‘%[fo,t, 1B, —al =0} € 7.

Definition 14.13 Let 7 be a stopping time. The o-field of the past before T is
defined by

Fri={A e Foo: Yt >0, AN{T <t} € F;}.

We leave it as an exercise to check that §7 is a o-field. If § and T are two
stopping times such that S < T, then, for every A € Fs and t > 0, we have

AN{T <t} =(AN{S <t}h) N{T <t} e F;,

which shows that s C Fr.

Lemma 14.14 Let T be a stopping time. The random variable T is Fr-measurable.
For every w € {T < oo}, set

Br (@) = Br(0)(®).
Then Bt is Fr-measurable.

Remark As in Proposition 12.11, we use the notion of measurability for a function
defined only on a measurable subset of the underlying space.

Proof The first assertion is very easy. It is enough to verify that {T" < s} € Fr, for
every s > 0. However, we have {T < s} N{T <t} ={T <s At} e Fsn CF
which gives the desired result.

To prove the second assertion, we introduce the following notation. For n € N
and for any + > O, [7], stands for the largest real of the form k27", k € Z4,
smaller than or equal to 7. We then observe that, for ® € {T < oo}, we have
Br(w) = lim B|7),(w) as n — oo, and so it is sufficient to prove that B|r, is
Fr-measurable. If A € B(RY), we have

e¢]

(Biry, e Ay =J (k27" =T < k+ D270 (Bian € 4)).
k=0

We claim that (k27" < T < (k+ 1)27"} N {Byr-» € A} is in Fr, for every integer
k > 0. From the last display, this will show that {B|7,, € A} € Fr and thus B|r,
is Fr-measurable, which is the desired result.
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To get our claim, we have to verify that, for every ¢ > 0, the event
({kz—" <T < (k+ 127" N (B € A}) N{T <1}

is in F;. However, this event is empty if t < k27", and, if + > k27", it is equal
to (k27" < T <t A(k+ 1)27"} N {Byr-» € A}, which belongs to F;, because,
on one hand, {Bj,-» € A} € Fjp-» C F; and, on the other hand, {k27" < T <
tAG+ 127" ={T <t A(k+ 1)27"I\{T < k27"}. This completes the proof of
our claim. |

Theorem 14.15 (Strong Markov Property) Let T be a stopping time such that
P(T < o0) > 0. For every t > 0, define a random variable BI(T) by setting

g™ ._ | Br+s — Brif T < oo,
o if T = oo.

Then, under the conditional probability P(- | T < 00), the process (B,(T)),Zo isa
Brownian motion started at 0 and independent of Fr.

Remark The fact that B,(T) is a random variable (and is in fact F7.;-measurable)
follows from Lemma 14.14.

Proof Clearly it is enough to consider the case when By = 0 (otherwise write
B; = x + B/ and note that o' (B}, s <t) = o (Bs, s <1)).
We first assume that 7 < oo a.s. We claim that, for every A € Fr and0 < <
- < tp, and every bounded continuous function F from (Rd )? into R, we have

E(1a F(B".....B{!)] = P(A)E[F(B,,..... B,)l. (14.10)

The statement of the theorem (when T < oo a.s.) follows from (14.10). Indeed, by
taking A = £2, we get that (B(1)),~( satisfies property (P1), and since property (P2)
is obvious by construction, we obtain that (BI(T))tzo is a Brownian motion started
at 0. Furthermore, (14.10) also shows that, for every choice of 0 < 11 < --- < 1,
the random vector (BI(IT), . B,(pT)) is independent of Fr, which implies that BT
is independent of F7.

Let us verify our claim (14.10). For every integer n > 1 and every s > 0, let [s],
be the smallest real of the form k27", k € Z greater than or equal to s. Clearly,
0 < [s1n —s < 27". We have thus a.s.

T T
FB, ..., B

tp

= F(Br4y — Br, ..., Br4t, — Br)
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= ngngo F(B"T]n‘i’tl - B"T]n’ trto B"T]n‘Hp - BFTM)

[e¢)
= lim > Ng—tpr<r <k F(Bia-nis, — Bians ., Biangy, — Bran),
k=0

where we notice that the sum over k contains at most one non-zero term. By
dominated convergence, it follows that

E(14 F(B", ..., B

tp

o0
. k27" k27"
:nILHSOE EllaLjg-1p-r<r<ko-m F(BL ... BE2 ), (14.11)
k=0

where we use the same notation Bt(kzin) = Byy-ny; — Byp-» as in Proposition 14.8
(iii). Since A € Fr, the event A N {(k — 1)27" < T < k27"} is Fpo-n-
measurable. By the simple Markov property (Proposition 14.8 (iii)), the latter event
is independent of (Bt(kzin)) >0, and we have thus

K" K"
E[lAﬂ{(k—l)Z*"<T§k2*"}F(Bt(l )a---’Bt(p 0

=PAN{k— 127" < T <k2"DE[FB ", ... B> )]
=PAN{(k—-127" <T <k27")E[F(By, ..., B;,)],
since B%2™") is a Brownian motion started at 0. Our claim (14.10) follows since
summing the latter equality over k € Z,. shows that the series in the right-hand side

of (14.11) is equal to P(A) E[F (By,, . .., By,)] (independently of n!).
When P(T = oo) > 0, the very same argument gives

Ellanr<co) F(B", ..., B{/ ) =P(AN(T < col) E[F (B, ..., B;,)]
and the statement of the theorem follows in the same way as in the case T < 0o a.s.

O

The following theorem is an important application of the strong Markov property,
which is known as the reflection principle (Fig. 14.2).

Theorem 14.16 Suppose that (B;):>o0 is a one-dimensional Brownian motion
started at 0, and, for every t > 0, set §; = sup <, Bs. Then, for every t > 0,
a>0andb € (—o0, a], we have

P(S; > a, B < b) =P(B; > 2a — b).

Consequently S; has the same law as | By|.
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B,

2a — b

Fig. 14.2 Tllustration of the reflection principle. Knowing that Brownian motion has hit a before
time ¢, the probability that it lies below b at time ¢ is the same as the probability that it lies above
2a — b at the same time. This corresponds to replacing the part of the graph of Brownian motion
between times 7, and ¢ by its reflection across the horizontal line of ordinate a (this reflection
appears in dotted lines in the figure)

Proof We apply the strong Markov property to the stopping time
T, =inf{t > 0: B, = a}.

We know from Corollary 14.10 that 7, < oo a.s. We have {S; > a} = {T, < t} a.s.
(by the equality By = 0 a.s. and the continuity of sample paths). Hence,

P(S; >a, B <b)=P(T,; <t, B, <D)
Now notice that, with the notation of Theorem 14.15, we have

{To<t.B <b}y={T, <1.B) <b—a}

because, on the event {T, < t}, we have B;Z“T)a = B; — By, = B; — a. Define
H={(s,w) e Ry x C(R4+,R); s <t, w —s) <b—a}and observe that H is a
measurable subset of Ry x C(R4, R) (we leave the proof to the reader). Then, the
event in the last display can also be written as

{(T,, B™) € H}
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where we view BTa) = (B,(T")) >0 as arandom variable taking values in C (R4, R),
as explained after Definition 14.7.

By Theorem 14.15, B4 is a Brownian motion independent of F7,, and in
particular of 7,, (by Lemma 14.14, T, is F7,-measurable). Since B has the same
law as —B7@)  the law of the pair (7;, B7«)), which by independence is the product
of the laws of T, and of BT® _is also the same as the law of (T, —B(Ta)). Hence,

P(S; = a, B; < b) =P((T,, B') € H]
=P[(T, —B") € H)
=P(Ta <t, —B". <b—a)
=P(T, <t, B >2a—b)
=P(B; > 2a — b)
because the fact that 2a — b > a shows that the event { B, > 2a — b} is contained in
{Ta <1}

As for the second assertion, by noting that P(B; = a) = 0 and using the case
b = a of the first assertion, we get

P(S; = a) =P(S; 2 a,B; = a) + P(S; 2 a, B <a) =2P(B; > a) = P(|B,| = a),

which gives the desired result. O

In the next two corollaries, we keep the notation and assumptions of Theo-
rem 14.16 ((B;);>0 is a one-dimensional Brownian motion started at 0).

Corollary 14.17 Lett > 0. The law of the pair (S;, B;) has a density given by

2(2a — b) (2a — b)? ;
€X — .
«/27”‘3 Y 2 {a>0,b<a}

Proof The previous theorem shows that, for every a > 0 and b € (—o0, a],

8t (a7 b) =
L™ e
P(S; >a, B <b)=P(B; >2a—b) = e dx.
\/27'[[ 2a—b
since B; is Gaussian N'(0, r). It is then a simple matter to verify that

P(S; =z a, By = b) =/ 8i(x, y)dxdy,

[a,00) X (—00,b]

and this suffices to obtain that g; is the density of (S;, By). a
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Corollary 14.18 Leta > 0 and T, = inf{t > 0 : B; = a}. Let N be a Gaussian
N(0, 1) random variable. Then T, has the same law as a®/N* and has a density
given by

2

a a
Jfa(@) = i3 eXP(— 2t)l{r>0}~
Proof Forevery t > 0,

P(Ta =) =P(S; =z a)
=P(|B;| = a) (Theorem 14.16)
=P(B? > a%)

= IP’(th > az) (B, has the same law as /7 N)

Then an easy calculation gives the density of a>/N? (Exercise 8.7). O

Reformulation on the Canonical Space In view of forthcoming developments,
it will be convenient to reformulate the strong Markov property in the framework
of the canonical construction of Brownian motion given at the end of Section 14.3.
From now on, we thus consider the canonical space € = C(R, R?) equipped with
the o-field C, on which we define B; (w) := w(¢), and the o-fields §; := o (B;, 0 <
s < ). Recall that, for every x € RY, we have a (unique) probability measure P, on
(2, C) such that (B;);>0 is a Brownian motion started at x under P,. We will use w
rather than w for the generic element of 2.

As in the case of Markov chains, one of the reasons for using the canonical
construction is the fact that it allows the definition of translation operators. For
every s > 0, the mapping 6, : 2 —> R is defined by

OswW)(1) 1= W(s +1), Vt > 0.

Equivalently, B; o 05 = B4, for every t > 0.
Let T be a stopping time of the filtration (§;);>0. Then we may consider the

mapping
Or :{T < o0} — R

which is (obviously) defined by 07 (w) = 67(w)(w). It is not hard to prove that this
mapping is measurable, using the same method as in the proof of Lemma 14.14.
In fact, with the notation introduced in this proof, we have for every w such that
T (w) < 00, 07 (W) = lim,—, o 6|7, (W), and it therefore suffices to prove that 0|7,
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is measurable for every n. This is easy since | T |, takes only countably many values,
and 6|7, coincides with 6;,-» on the (measurable) event where |T |, = k27".

Theorem 14.19 Let T be a stopping time, and let F and G be two nonnegative
measurable functions on Q. We assume that F is Fr-measurable. Then, for every
x e R4,

E:[1{7<00} F' G 0 07] = Ex[1{7 <00} F E; [G]].

Remark This statement is obviously similar to Theorem 13.8.

Proof We may assume that P, (T < 00) > 0 (otherwise the result is trivial). To
simplify notation, we write P)ET) for the probability P)ET) =P (|T < o0) (and ESCT)
for the expectation under P)(CT)). We first observe that, if T(w) < oo,

Orw) (@) = w(T +1) = W(T) + (W(T +1) —w(T)) = Br(w) + B (w),
with the notation of Theorem 14.15. Then,

ED[F Goor1=ED[F GBr + B =ED[FED[GBr + BD) 571l

where as previously B denotes the random continuous function (BI(T)) +>0. Then,
on one hand, Bt is §r-measurable, and, on the other hand, Theorem 14.15 shows
that BMT) is independent of §7 under P)ET), and its law under P)ET) is Py. Using
Theorem 11.9, we get

EP[GBr + BD)|Fr]1 = / Py(dw) G(Br + w) = Eg,[G]

and the desired result follows. m]

14.6 Harmonic Functions and the Dirichlet Problem

Throughout this section and the next one, we use the canonical construction of
Brownian motion, and in particular (B;);>0 is a Brownian motion started at x under
the probability measure P, for every x € R?. To avoid trivialities, we assume that
d=>2.

In Section 7.3, we introduced Lebesgue measure on the unit sphere S9! which
is denoted by wy. The uniform probability measure on S?~! is the probability
measure o, obtained by normalizing wy: 04(A) = (wg (S 1) Lwy(A) for every
Borel subset A of SY~!. By Theorem 7.4, o, is related to Lebesgue measure A4 on
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R? via the explicit formula

r@+1n

o) =" "2,

AM{rx:0<r <1, x € A}).

Similarly as wy, the measure oy is invariant under vector isometries. Furthermore,
by Theorem 7.4, we have for every Borel measurable function f : RY —s Ry,

f Fx)dx =g /Oo/ Fr)ridroy(dz). (14.12)
R4 0 Jsd-1

27412

where ¢; = .
rddj/2)

Lemma 14.20 The measure o4 is the only probability measure on S~ that is
invariant under vector isometries.

Proof Let 11 be a probability measure on S?~! and assume that y is invariant under
vector isometries. Then, for every & € R? and every vector isometry @,

wE) = / e p(dx) = / A5 (dx) = / PET (dy) = (@ (E)).

It follows that (&) only depends on |£ |, and therefore there is a bounded measurable
function f : Ry — C such that, for every & € R,

&) = f&D.

By the same argument, there is a bounded measurable function g : Ry — C such
that

G4(8) = g(I&D).

Then, for every r > 0,

/ ( / 7 () Yo (46) = / £ 0a(de) = £(r)
sd—1 \ Jgd-1 §d—1

and, by the Fubini theorem, this is also equal to

/ (/ ei”‘éad(dé))u(dx):/ g(r) p(dx) = g(r).
§d—1 §d—1 Sd-1

Hence f = g, so that & = 64 and = o4 by Theorem 8.16. o

If x e Rd_ and r > 0, we denote the open ball of radius r centered at x by
B(x,r), and B(x, r) stands for the closed ball. The uniform probability measure on
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the sphere of radius r centered at x is by definition the pushforward of o,;(dy) under
the mapping y — x + ry, and is denoted by oy ,.

Recall that, until the end of this chapter, we consider the canonical construction
of Brownian motion.

Proposition 14.21 Let x € R? and r > 0. Let S be the stopping time
S=inf{r >0:|B; — x| > r}.

The law of Bs under Py is the probability measure oy ,.

Proof By elementary translation and scaling arguments, it is enough to consider the
case x = 0,r = 1, and then oy , = 0y. In that case, Proposition 14.8 (i) shows that
the law of By is invariant under vector isometries. Thanks to Lemma 14.20, the law
of Bg must be 0. |

Recall that a domain D is a connected open subset of R?. A function & : D —>
R is said to be locally bounded if it is bounded on every compact subset of D.

Definition 14.22 Let D be a domain of R. A locally bounded measurable function
h : D — Ris called harmonic if, for every x € D and every r > 0 such that the
closed ball B(x, r) is contained in D, we have

hix) = / h(») 025 (d). (14.13)

In other words, the value of & at x coincides with its mean over the sphere of
radius r centered at x, provided that the closed ball B(x, r) is contained in D.

The Classical Dirichlet Problem Let D be a domain of R? with D # R¢, and let
g : 9D —> R be a continuous function. A function & : D — R is said to satisfy
the Dirichlet problem in D with boundary condition g if

* hjpp = g in the sense that, for every y € 9D,
g(y)= lim h(x);
x—y,xeD

e h is harmonic on D.

The next theorem provides a candidate for the solution of the Dirichlet problem.

Theorem 14.23 Let D be a bounded domain, and let g be a bounded measurable
Sfunction on dD. Set

T =inf{t > 0: B, ¢ D}.



14.6 Harmonic Functions and the Dirichlet Problem 375

Then the function
h(x) :=Ex[g(Br)]., xeD

is harmonic on D.
We may view this theorem as a continuous analog of Theorem 13.36 (i).

Proof To see that T is a stopping time, we write

{Tgt}:{ inf dist(Bs,D")zo},

0<s<r,5€Q

using the notation dist(x, A) = inf{|x —y| : y € A}. Since D is bounded, properties
of one-dimensional Brownian motion (Corollary 14.10) imply that 7 < oo, Py a.s.
Obviously, Br € aD, P, a.s. if x € D. We know that Br is a random variable (it
is even §r-measurable) and thus 4 (x) := E,[g(Br)] is well-defined for x € D and
bounded by sup{|g(y)| : y € 0D}.

Let us explain why % is measurable on D. Recall the notation C for the o-field
on C(R, RY). Then, for every A € C, the mapping x — P, (A) is measurable: this
property holds for cylinder sets of the form A = {w : w(#1) € Ay, ..., w(tp) € Ap},
since there is an explicit formula in that case, and it then suffices to use a monotone
class argument. It follows that the mapping x — E,[F] is measurable, for every
nonnegative measurable function F on C (R, R?). By applying this property to the
function

F(W) = 1{7(w)<o0} 8 (BT (W))

which is measurable by Lemma 14.14, we get that & is measurable.
Let us now fix x € D and r > 0 such that B(x,r) C D. Set

S=inf{r >0: B; ¢ B(x,r)} =inf{r > 0:|B; — x| >r}.

Clearly, S < T, P, a.s. (in fact S(w) < T(w) foreveryw € = C(R4, RY)).
Moreover

Br = Brofg, Pyas.

Indeed, this is just saying that, if # — w() is a continuous path starting from x, the
exit point from D for w is the same as the exit point from D for the path derived
from w by “erasing” the initial portion of w between time O and the first time when
w exits B(x, r).
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We can thus use the strong Markov property in the form given by Theorem 14.19
and get

h(x) = Ex[g(Br)] = Ex[g(Br) 0 05] = Ex[Eps[g(Br)]] = Ex[h(Bs)]

= /h(y) ox,r(dy)

where the last equality is Proposition 14.21. This completes the proof. O

In order to show that the function 4 in the preceding theorem solves the Dirichlet
problem (this would at least require g to be continuous), we would need to show
that, forevery y € 9D,

gy)= lim E;[g(Br)].
x—>y,xeD

Intuitively, if x € D is close to y € 9D, one might expect that Brownian motion
starting from x will quickly exit D, so that the exit point By will be close to x,
and thus also close to y, and the fact that g is continuous will ensure that g(Br)
is close to g(y). To make this argument rigorous, we will need certain additional
assumptions. Before that, we start by discussing the uniqueness to the Dirichlet
problem.

The next proposition shows that harmonic functions are automatically smooth.

Proposition 14.24 If h is harmonic on the domain D, then h is infinitely differen-
tiable on D. Moreover, if x € D and r > 0 are such that B(x,r) C D, we have

1

MO =B ) s

h(y)dy. (14.14)

Proof We may assume that D is bounded and % is bounded on D (we may replace
D by an open ball with closure contained in D). Fix o > 0, and set

Dy = {x € D : dist(x, D) > ro}.

It is enough to show that 4 is infinitely differentiable on Dyp—we assume implicitly
that ro is small enough so that Dy is not empty. To this end, consider a C* function
¢ : R — Ry with compact support contained in (0, r¢), and not identically zero.
For every x € Dy and every r € (0, r9), we have

h(x) I/Ux,r(dZ)h(Z) =/Ud(dy)h(x+ry).

We multiply both the left-hand side and the right-hand side by r¢~'¢(r) and
then integrate with respect to Lebesgue measure dr between 0 and rp. Using
formula (14.12) we get, with a constant ¢ > 0 depending only on ¢, for every
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x € Do,
ch(x) =cq /m dr rd*1¢(r) / oq(dy) h(x +ry)
0

=/ dz¢(|zDh(x + 2)
B(0,rq)

= / dz¢(Jz — x)h(2)
B(x,rg)

=/(kmm—mﬁ@
]Rd

where in the last equality we wrote h for the function defined on R? such that E(z) =
h(z)ifz € Dand h(z) =0ifz ¢ D.

Hence, on Dy, & is equal to the convolution of the function z — ¢(|z|), which
is infinitely differentiable and has compact support, with the function h, which is
bounded and measurable. An application of Theorem 2.13 easily shows that such a
convolution is infinitely differentiable.

We still have to prove the last assertion. We replace ¢ by 1|9 ,,) in the preceding
calculation, and we get that, for every x € Dy,

h(x) = c’/ dz h(z)
B(x,rg)

with a constant ¢’ independent of 4. Taking 2 = 1 (which is harmonic!), we get that
¢ = g(B(x,rg))) ! giving the desired result. |

Corollary 14.25 Let D be a bounded domain, and let g be a continuous function
on dD. If a solution to the Dirichlet problem in D with boundary condition g exists,
it is unique.

Proof Suppose that 41 and &y are two solutions, and set f = h; — hy. We argue
by contradiction and assume that f is not identically zero. Up to interchanging the
roles of 41 and &y, we may assume that there exists x € D such that f(x) > 0. If
we extend f by the value 0 on 8 D, the resulting function is continuous on D, and
thus attains its maximum M > Oin D. Let xo € D such that f(xo) = M. By the
preceding proposition, for every r < dist(xg, D),

1
_ d ,
S (x0) Ad(B(x0,7)) JB(xo.r) I

so that

f dy (f(x0) — £(3)) = 0.
B(xo,r)
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Since f(xo) = f(y) forevery y € D, this is only possible if f(x¢) = f(y), Aq(dy)
a.e. on B(xp, r). Since f is continuous (again by Proposition 14.24) we have thus
f() = f(xo) = M forevery y € B(xp,r). We getthat {x € D : f(x) = M} is
an open set. On the other hand, this set is also closed and since D is connected we
have necessarily {x € D : f(x) = M} = D, which is absurd since f tends to O at
the boundary of D. O

Definition 14.26 We say that a domain D of R? satisfies the exterior cone condition
if, for every y € 9D, there exists » > 0 and a circular cone C with apex y such that
CnB(y,r) C D°.

Theorem 14.27 Assume that D is a bounded domain that satisfies the exterior cone
condition, and let g be a continuous function on dD. Let T be as in Theorem 14.23.
Then the function

h(x) = Ex[g(Br)], xe€D

is the unique solution of the Dirichlet problem in D with boundary condition g.
Proof Thanks to Theorem 14.23 and Corollary 14.25, it is enough to verify that, for
every fixed y € 9D,

lim_ h(x) = g(y). (14.15)

X—>y,X€E

Letus fix ¢ > 0. To prove (14.15), we have to verify that we can choose o > 0 small
enough so that the conditions x € D and |x — y| < o imply |h(x) — g(¥)| < €.

By the continuity of g, we may first choose § > 0 such that the conditions z € 9D
and |z — y| < § imply

18(2) — g < ;

Then let M > 0 such that |g(z)| < M for every z € 3 D. We have, for every x € D
andn > 0,

[Ex[g(Br)] — g < Ex[lg(Br) — ¢ ir<n}] + Ex[Ig(Br) — ¢ 1{1>1}]
< E:[I1g(Br) — ¢(" 7 <mLsup,_, 1B, —x|<8/2}]

5
+2MPx<sup|B, —x|> 2) +2MP(T > 1)

=n

=I1+11+111.

We will now bound separately the three terms I, 11, I11.
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Consider first the term / /. From translation invariance, we have

8
II=2MP0(sup|B,| > )
1<n 2

so that the term /7 does not depend on x. Clearly, /7 tends to 0 when n — 0
(this is saying that sup, _, | B| —> 0 in probability under Py, which holds since the
continuity of sample paths even gives a.s. convergence). We can therefore fix n > 0
small enough in such a way that /1 < ¢/3.

Then, if x € D and |[x — y| < g, we have, on the event {T" < n} N {sup, -, | B —
x| =68/2},

|Br —yl < |Br —x|+|x —y| < 3§

and our choice of 6 ensures that the term [ is bounded above by ¢/3.

Since ¢ was arbitrary, the desired result (14.15) will follow if we can choose
a € (0, 6/2) sufficiently small so that the condition |x — y| < o implies that the
term 111 = 2M P, (T > n) is also bounded above by ¢/3. This is a consequence of
the next lemma, which therefore completes the proof of the theorem. O

Lemma 14.28 Under the exterior cone condition, we have for every y € 0D and
everyn > 0,

lim Py(T > n) =0.
D

X—>Yy,XE

Remark As it was already suggested after the proof of Theorem 14.23, the key point
to verify the boundary condition (14.15) is to check that Brownian motion starting
near the boundary of D will quickly exit D with high probability. This is precisely
what the previous lemma tells us. The exterior cone condition is not the best possible
one, but it already yields certain interesting applications.

Proof We start by making the exterior cone condition more explicit. Fix y € dD.
For every u € S~! and y € (0, 1), consider the circular cone

Clu,y)={z eRY:z.u> 1 —=y)lzl}-
Then, we can choose r > 0, u € S9! and y € (0, 1) such that
y+ (Cu,y)NnB(,r)) C D°.
To simplify notation, set C = C(u, y) N B(0, r), and

5={zeRd:z~u>(l—J;)IZI}OB(O,;)

which is the intersection with B(0, 5) of a cone “slightly smaller” than C(u, r).
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If O is an open subset of R4, write Tp = inf{r > 0: B, € O}. Note that Tp is a
random variable because {Tp < t} = Use[o,nn@{Bs € O}. As an easy consequence
of the zero-one law (Theorem 14.9), we have

Tz =0, Pas..

Indeed, if (ex)nen is a sequence of positive reals decreasing to 0, the event
limsup{B;, € C} belongs to the o-field §o+, and an argument analogous to the
proof of Corollary 14.10 shows that this event has positive probability.

Fora € (0,7r/2), set

C,=CnNB(,a)c.

Since the open sets ’c”a increase to C when a 1 0,wehave Tz | Tz =0asa | 0,
Py a.s.

Let us fix 8 > 0. By the last observation, we can choose a > 0 small enough so
that

P(Tz, =nm) >1-8.
Using the fact that y + C C D¢, we have for x € D,
P(T <n) =P (Tyrc <n) =P(Ty_xyc <1n).

However simple geometric considerations (left to the reader!) show that, as soon as
|y — x| is small enough, the shifted cone y — x + C contains C, (see Fig. 14.3), and
then

P(T<nm=kTz, <n=>1-p

Fig. 14.3 Tllustration of the

proof. The set y + C is

delimited by~ thin lines, and D

the set y + C by thick lines.

Then y + C, appears as the 7
shaded part inside these thick \
lines. One observes that, if

x € D and x is close to y, the ‘
set x + C, will still be

contained in y + C
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by our choice of a. Since B was arbitrary, this completes the proof of the lemma and
of Theorem 14.27. |

We now derive an analytic characterization of harmonic functions, which is often
used as the definition of these functions. Recall that, if f is twice continuously
differentiable on D, the Laplacian Af is defined by

d

9 f
Af(x):Za L ()., xeD.

j=1 Yj

Proposition 14.29 Let h be a real function defined on D. Then h is harmonic on D
if and only if h is twice continuously differentiable on D and Ah = 0.

Proof Let h be harmonic on D. By Proposition 14.24, h is infinitely differentiable
on D. Let x € D and let rop > 0 be such that the ball B(x, rp) is contained in D. By
Proposition 14.24 again, we have, for every r € (0, o],

1
h(x) = h(y)dy. (14.16)
rd(B(x, 1)) JB(x,r
On the other hand, Taylor’s formula at order 2 shows that, if y = (y1,...,yq) €
B(x,r),
d 2

1 0°h
h(y)-h(x)+Z (x)(y, xi) + Za Pl xi)(yj —xj)+o(r?)
Yi

where the remainder o(r?) is uniform when y varies in B(x, r). By integrating the
equality of the last display over B(x, r), and using obvious symmetries, we get

d

1 3h
/B(x’r)h(y) dy = 2q(B(x,r)) h(x)+ 2 Z dy z(x) B(x’r)(yi —X[)zdy ~|—0(rd+2),

Set C1 = [g0.1) Y7dy > 0. The last display and (14.16) give

c
21 Ah(x) 2 4o+ = 0

which is only possible if Ah(x) = 0.

Conversely, assume that / is twice continuously differentiable on D and Ah = 0.
It is enough to prove that, if U is an open ball whose closure U is contained i in D,
then A is harmonic on U. By Theorem 14.27, there exists a (unique) function I that
is continuous on U, harmonic on U and such that h(x) = h(x) for x € dU. The
first part of the proof shows that A =0sur U, By applying the next lemma to the
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two functions 4 — / and 1 — h (viewed as defined on U ) we get that h = honU s
which completes the proof. O

Lemma 14.30 (Maximum Principle) Ler V be a bounded open subset of R, and
let u be a continuous function on the closure V of V. Assume that u is is twice
continuously differentiable on V and Au > 0 on V. Then,

sup u(x) = sup u(x).
xev xedV

Proof First assume that we have the stronger property Au > 0 on V. We argue by
contradiction and assume that

sup u(x) > sup u(x).
XEV xedV

Then, we can find x¢ € V such that

u(xp) = sup u(x).
xeV

It follows that

ou )
(x0) =0, Vjefl,...,d}
ayj

and moreover Taylor’s formula at order 2 ensures that the symmetric matrix

My = ( Pu )
= X
0 dy;0y; V) ety

is nonpositive, meaning that the associated quadratic form takes nonpositive values.
In particular, all eigenvalues of My, are nonpositive and so is the trace of M,,. This
is a contradiction since the trace of My, is Au(xg) > 0.

Under the weaker assumption Au > 0 on D, we set, for every ¢ > 0, and every
x = (x1,...,xq) € v,

us(x) =ulx) + sxlz,
in such a way that Au, = Au + 2¢ > 0. The first part of the proof ensures that

sup ug(x) = sup ug(x),
eV xedV

and the desired result follows by letting ¢ tend to 0. O
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14.7 Harmonic Functions and Brownian Motion

We start with an important result connecting Brownian motion, martingales and
harmonic functions. To state this result, we first need to define continuous-time
martingales (this is a direct generalization of the discrete-time martingales studied
in Chapter 12). Recall that we assume d > 2 and that we argue on the canonical
space of Brownian motion as defined at the end of Section 14.3. As previously, for
every ¢t > 0, §; denotes the o-field generated by (Bs, s < ). A collection (M;);>0
of integrable random variables indexed by the nonnegative reals is a (continuous-
time) martingale under the probability measure P, if M; is §;-measurable, for every
t > 0, and the relation M = E,[M;|J;] holds forevery 0 < s < ¢.

For every open subset U of R?, we set Hy = inf{t > 0 : B, ¢ U}. It is easy to
verify that Hy is a stopping time (just write {Hy < t} = {inf{dist(B;, U) : s €
[0,71N Q} = O}).

Theorem 14.31 Let D be a domain in RY. A continuous function h :D — R
is harmonic if and only if, for every bounded open set U with closure U C D, the
random process

(h(BiaHy))i=0

is a martingale under Py, for every x € U.

Informally, a function is harmonic if and only if its composition with Brownian
motion is a martingale.

Proof Let us first assume that / is harmonic, and let U be an open set satisfying the
conditions of the statement. To simplify notation, set H = Hy. Also fix x € U and
note that the random variables /(B; g ) are bounded above, P, a.s., by sup{|2(y)] :
y e U} < oo.

Lets < t. The random variable B f is §s4 g-measurable (Lemma 14.14) hence
also §s-measurable (by the remark before Lemma 14.14). To get the desired equality
ETh(Biam)|8s] = h(Bsam), it is therefore enough to show that, for every bounded
§s-measurable random variable F, one has

Ex[F h(Bsnn)] = Ex[F h(Bian)l.

We may view the restriction of 4 to U as the (unique) solution to the Dirichlet
problem in U with a boundary condition given by the restriction of # to dU. If U
satisfies the exterior cone condition, Theorem 14.27 shows that necessarily for every
yeU,

h(y) = Ey[h(Br)]. (14.17)

In fact this equality holds even if U does not satisfy the exterior cone condition.
To see this, set U, := {y € U : dist(y, U) > ¢} for every ¢ > 0 and notice
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that (if ¢ is small) U, is nonempty and satisfies the exterior cone condition. So for
every y € U, for ¢ small enough so that y € U, the preceding considerations give
h(y) = Ey[h(Bpy, )], and we just have to let ¢ — 0 using dominated convergence
(note that Hy, 1 Hy as ¢ |, 0).

It follows from (14.17) that

Ex[F1i<mh(Bs)] = Ex[F 15y Ep [n(Br)]].

However, since F 1(;. ) is §s-measurable, the Markov property, in the form stated
in Theorem 14.19 with T = s, implies that

E [F1<pyEp [h(By)ll = Ex[F 1s<myh(Bp) o 05] = Ex[F Lis<gyh(By)],
since By o 6y = By on the event {s < H}. We thus get

Ei[F h(Bsan)] = Ex[F 1s<myh(By)] + Ex[F 15> pyh(Bp)]
= Ex[F 15<myh(Bu)] + Ex[F 15> myh (Bp)]
= Ex[F h(Bg)].
The same argument gives
Ei[F h(Biag)] = Ex[F h(Bn)]
and we arrive at the desired equality.
The converse is easier. Assume that £ satisfies the property in the statement, and

let U be an open ball with closure contained in D. By the martingale property, for
everyx € U,

h(x) = Ex[h(Boaty)] = Ex[h(Binm,)].

By letting t — oo and using dominated convergence, we have h(x) = E[h(Bg,,)],
and Theorem 14.23 shows that / is harmonic on U. O

Proposition 14.32 Let 0 < a < b and let D, p be the domain
D,» = B(0,b)\B(0, a).

Let f : Dsp, —> R be a radial function, meaning that f(x) only depends on |x|.
Then f is harmonic if and only if there exist two constants C, C' € R such that

C+C'loglx| ifd =2,

fx) = { C+CIx>4 ifd>3.
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Proof Suppose that f is harmonic. By Proposition 14.24, f is infinitely differen-
tiable. Let g : (a,b) —> R be the function such that f(x) = g(]x|). The formula
for the Laplacian of a radial function reads

" d—1 ’
Af(x) =g"(IxD) + x| g (Ix]).

By Proposition 14.29, g solves the differential equation

" d—1 ’
g+ . g (r)=0.

Solving this equation shows that f is of the form given in the proposition.
Conversely, if f is of this form, Proposition 14.29 shows that f is harmonic. m]

In the next two statements, we use the notation 74 = inf{t > 0 : B, € A} for any
closed subset A of RY.

Proposition 14.33 Ler x € R?\{0}, and let ¢, R > O such that ¢ < |x| < R. Then,

logR —1
og og |x| ifd = 2.
logR —loge
Pe(T0,) < TB0.R)) = (14.18)

|x|27(1 _ R27d
g2—d _ R2-d lfd =3

Remark In dimension d = 1, the corresponding formula is

b—x
P (T, <Tp) = b—

fora < x < b. This can be proved in exactly the same manner, noting that harmonic
functions are affine functions in dimension one. This may be compared with the
analogous formula for simple random walk on Z in the gambler’s ruin example of
Section 12.6.

Proof Consider the domain D = D, g, with the notation of Proposition 14.32. This
domain satisfies the exterior cone condition. Let g be the continuous function on d D
defined by

{g(y)=l if |y] = ¢,
g(y) =0 1f|y| = R.

Then Theorem 14.27 shows that

h(x) = PX(TB(O,S) < TB(O,R)C) s E< |x| <R
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is the unique solution to the Dirichlet problem with boundary condition g. Using
Proposition 14.32, we immediately see that the right-hand side of (14.18) solves the
same Dirichlet problem. The desired result follows. O

The preceding proposition yields interesting information on the almost sure
behavior of the Brownian sample paths.

Corollary 14.34
(1) Ifd = 3, foreverye > 0and x € R? such that ¢ < |x|,

P (Tg,) < 00 = (- )d_z.

x|
Moreover, for every x € Rd,

lim |B;| = o0, P, a.s.
—>00

(ii) Ifd =2, for every s > 0 and x € R* such that & < |x|,
Px(TB(O,e) <o) =1
but
P, (Typ; < 00) =0.

Moreover, Py a.s., for every open subset U of R?, the set {t > 0 : B; € U} is
unbounded.

By analogy with the case of Markov chains, we say that Brownian motion is
transient in dimension d > 3 and recurrent in dimension d = 2. Note that this
recurrence property does not mean that all points are visited: on the contrary, a fixed
point of R? other than the starting point is not visited with probability one.

Proof

(i) The first assertion is easy since
Pc(Th0. < 00) = r}lTrglo Pc(T30.6) < TBO.n))

and we just have to apply (14.18).
Then, for every integer n > 1, set

Ty = Tpo,2y-
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(ii)
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By applying the strong Markov property at T(,) (in the form given by
Theorem 14.19), and using the first assertion, we get for |x| < 2",

. n g
P( inf [Bil <n)=Ei|Pa;, (g, <o0)| = ()2

t= (n)

The Borel-Cantelli lemma then implies that, P, a.s. for every large enough
integer n, we have

inf |B;| > n.
12T

It follows that the function + — |B;| converges to co as t — 00, a.s.
By formula (14.18) we have

P.(T T ) log R — log |x|
5 < c) =
¥ B(0.2) BO.R) log R —loge
if ¢ < |x| < R. By letting R tend to oo in this formula, we get for ¢ < |x|,
Px(TE(o,g) < o0) = 1.

Letting ¢ tend to O in the same formula gives for x| < R,

P (Tyy < TB(o,r)c) = 0.
Since Tg(o,r)c 1 00 as R 1 oo, this implies that, for x # 0,

P, (Typ; < 00) =0.
If x # 0, we have thus both
P, as. Ve > 0, TB(O,e) < 00

and

P.as. 0¢ {B;:t>0}.
These two properties imply that, P, a.s., O is an accumulation point of the
function + — B; when t — oo. Hence, a.s. for every open set U containing
0, the set {r > 0 : B, € U} is P, a.s. unbounded. A translation invariance

argument then gives the last assertion (note that it is enough to consider a
countable collection of open sets U).
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We conclude this chapter with a discussion of the Poisson kernel and its
interpretation as the exit distribution of Brownian motion from a ball. The Poisson
kernel (of the unit ball) is the function defined on B(0, 1) x S¢~! by

1= |x?

| @ x € B(0,1), y eS¢ 1.
x—y

K(x,y) =

Lemma 14.35 For every fixed y € S, the function x — K (x, y) is harmonic on
B, 1).

Proof Set Ky(x) = K(x,y) for x € B(0,1). A (tedious but straightforward)
calculation shows that AK, = 0 on B(0, 1), and the desired result follows from
Proposition 14.29. O

Lemma 14.36 For every x € B(0, 1),
/ K(x,y)oq(dy) = 1.
Sd—l
Proof For x € B(0, 1), set

F(x)=/ K (x,y)oa(dy).
§d—1

One easily infers from the preceding lemma that the function F is harmonic on
B(0, 1): one way to see this is to apply Fubini’s theorem to check that the mean value
property (14.13) holds for F since it holds for the functions K (or alternatively
one may differentiate under the integral sign to verify that AF = 0). On the other
hand, using the invariance properties of o; and K under vector isometries, one gets
that F is a radial function. The restriction of F to B(0, 1)\{0} must then be of the
form given in Proposition 14.32. Since F is also continuous at 0, the constant C’ in
the formulas of this proposition must be zero and F is constant. Finally, for every
x e B@O,1), Fx)=F(0) =1. ]

Theorem 14.37 Let g be a continuous function on S?~1. The solution of the
Dirichlet problem in B(0, 1) with boundary condition g is

h(x) = /qu K(x,y) g(y)oa(dy) ., x € B0, 1).

Moreover, for every x € B(0, 1), the law of the exit point of Brownian motion started
at x from the ball B(0, 1) has a continuous density with respect to o4(dy), and this
density is the function y — K (x, ).
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Proof The same application of Fubini’s theorem as outlined in the proof of
Lemma 14.36 shows that 4 is harmonic in B(0, 1). To verify the boundary condition,
fix yo € S4-1. For every § > 0, the explicit form of the Poisson kernel shows that,
if x € B(0,1) and y € S?~! are such that |x — yo| < 8/2 and |y — yo| > 8, we have

ke = (3) a-ip.

It follows from this bound that, for every § > 0,

lim / K(x,y)o(dy) =0. (14.19)
x=>y0.X€BO1) J|y—yo| >} o

Then, given ¢ > 0, we choose § > 0 small enough so that |g(y) — g(yo)| < ¢
whenever y € S?"!and |y — yo| < 8. If M = sup{|g(y)| : y € S}, we have

lh(x) —g(yo)l = ‘/SH K(x,y) (8(y) — g(30)) 04(dy)
<2M K(x,y)o(dy)+e,
{ly—yol>8}
using Lemma 14.36 in the first equality, and then our choice of §. Thanks to (14.19),

we now get

limsup  |h(x) — g(yo)| <e&.
x—y0,x€B(0,1)

Since ¢ was arbitrary, we obtain the desired boundary condition.
Finally, for the last assertion, we use Theorem 14.27, which asserts that the
unique solution to the same Dirichlet problem is also given by

h(x) = Ex[g(Br)],

where T = inf{r > 0 : B, ¢ D}. By comparing the two formulas for # we obtain
precisely that the law of Br under Py is the measure K (x, y)og(dy). |

14.8 Exercises

In Exercises 14.1 to 14.11, (B;);>0 is a one-dimensional Brownian motion with
By =0,and S; = sup{B; : 0 < s < t}.

Exercise 14.1 Foreverya > 0,set T, = inf{t > 0: B, = a}.

(1) Prove that, for every 0 < a < b, the random variable 7;, — T, is independent of
o (T, 0 < ¢ < a) and has the same distribution as Tp_.
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(2) Prove that, for every ay, ...,a, € Ry and A > 0, the vector (Tig, - .., Tha,)
has the same law as (AzTal, R A2Ta,l).
(3) Letn € Nand let TM, 7@ .. T™ be n independent random variables

distributed as 7. Verify that T + ... + T has the same distribution as
n?T;. Comment on the relation between this result and the strong law of large
numbers.

Exercise 14.2 Leta > 0 and T, = inf{t > 0 : B, = a}. Prove that we have almost
surely

T, =inf{t > 0: B; > a}.

Exercise 14.3 Prove that

! 1/Jt
(/ oBs ds) ROWIYY
0 11— 00

where N is a Gaussian A (0, 1) random variable.

Exercise 14.4

(1) Prove that a.s.,

B B
lim sup "= +o00, liminf —ev
t

10 /i 1o/
(2) Lets > 0. Prove that a.s. the function ¢ — B; is not differentiable at s.

Exercise 14.5

(1) For every integer n > 1, set

on

2
Zn = Z (Bszn - B(kfl)Z*”) .

k=1

Compute E[ X, ] and var(X},), and prove that X, converges in L? and ass. to a
constant as n — 00.

(2) Prove that a.s. the function ¢t — B;(w) is not of bounded variation on the
interval [0, 1] (see Exercise 6.1 for the definition of functions of bounded
variation).
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Exercise 14.6

(1) Foreveryt € [0, 1], set B; = Bj_; — Bj. Prove that the two random processes
(Bt)tefo,1] and (B))se[o0,1] have the same law (as in the definition of the Wiener
measure, this law is a probability measure on the space C ([0, 1], R)).

(2) Let t > 0. Prove that S; — B; and §; have the same law without using
Corollary 14.17.

Exercise 14.7 Lett = inf{r > 0: B, = S1}.

(1) Prove that0 < 7 < 1 a.s. (one may use the preceding exercise) and then that T
is not a stopping time.

(2) Using question (2) of the preceding exercise, verify (without making any
calculation) that, for every a € (0, 1),

P(tr > a) = P(+/1 — a|N| > /a|N'|)

where N and N’ are two independent Gaussian N (0, 1) random variables.
(3) Conclude that the law of t is the arcsine distribution of Exercise 9.3.

Exercise 14.8 Show the local maxima of B are almost surely distinct. In other
words, a.s. for any rationals 0 < a < b < ¢ < d, we have

sup B; # sup B;.

a<t<b c<t<d

Exercise 14.9 Let H = {r € [0,1] : B, = 0}. Using Corollary 14.10 and the
strong Markov property, prove that H is a.s. a compact subset of [0, 1] with no
isolated points and zero Lebesgue measure.

Exercise 14.10

(1) For every a > 0, set o, = inf{t > 0 : |B;| > a}. Show that there is a constant
y € (0, 1) depending on a such that, for every integer N > 1,

P(o, > N) < yV.
(2) Forevery n > 1, define a sequence 7', T|", .. . by induction by setting
Ty =0, T{' = oy, T’y =inf{t > T} : |B; — Brn| = 27"
Verify that the random times 7" are almost surely finite and are stopping times.
Prove that the random variables Tk" — Tk"_l, k = 1,2,..., are independent

and identically distributed, and similarly the random variables Byn — Brp ,
k=1,2,..., are independent and identically distributed.
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(3) Weset X7 =2" BTk" forevery k € Z . Verify that (X})iez. is a simple random
walk on Z.
(4) Show that there exists a constant ¢ > 0 such that, for every ¢ > 0,

nlingo T['zz,,” =ct, as.

(5) Infer that, for every ¢ > 0,

lim sup B, =0, as.

n
2ng|
=0 g<g<s 2n " 127s)

and finally that ¢ = 1.

Exercise 14.11 For « € (0, 1], a continuous function f : [0, 1] —> R is said to be
a-Holder if there exists a constant C such that | f(s) — f(#)| < C |s — t]|* for every
s,t €[0,1].

(1) Prove that the function [0, 1] 3 ¢ +— B;(w) is a.s. not %-Hélder.

(2) Let 6§ € (0, é). Prove that a.s. there exists an integer no(w) such the bound
|Bo—n — Bg—1y2-n| =< 27" holds for every n > ng(w) and every k €
{1,...,2"}L

(3) Prove that the function [0, 1] > # — B;(w) is a.s. §-Holder.

Exercise 14.12 Let d > 3 and let B be a d-dimensional Brownian motion started
from 0. Fix A > 1 and 6 € (0, 1), and set

Rsa={xeR?:8<|x| <A}
For every n > 1 and every k1, ..., kg € Z, define the cube

Ky = K127 (i + D27 x [k227", (ko + D27 x - - x [kg27", (kg +1D27"].

,,,,,

,,,,,

(1) Prove that there is a constant K depending on § and A such that, for every
n>1,

E[N,] < K 2%".

(2) Recall from Exercise 3.4 the definition of the Hausdorff dimension dim(A) of
a subset A of R?. Prove that dim({B;,t > 0}) <2 a.s.
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Exercise 14.13 Let D be a bounded domain in RY, d > 2, and let g be a
continuous function on dD. Suppose that /& solves the Dirichlet problem with
boundary condition g. Show that, for every x € D,

h(x) = Ex[g(Br)],
with the notation of Theorem 14.23 (in particular T = inf{t > 0 : B; ¢ D}).

Exercise 14.14 Letd > 2, andlet D = {x € R? : 0 < |x| < 1} be the punctured
open unit ball. Define g : dD — R by setting g(x) = 1 if |[x| = 1 and g(0) = 0.
Prove that the Dirichlet problem in D with boundary condition g has no solution.
(Hint: Use the result of the preceding exercise).

Exercise 14.15 Let d > 3. Let K be a compact subset of the closed unit ball,
and D = R?\K. We assume that D is connected and satisfies the exterior cone
condition. Let g : 3D — R be a continuous function. We consider a function u
that satisfies the Dirichlet problem in D with boundary condition g, and assume that
u is bounded.

We use the canonical representation of Brownian motion in Rd, and set Ty =
inf{t >0: B; € K} € [0, o<].

(1) Let (Ry)neN be a sequence of real numbers in (1, co) such that R, 1 oo as
n — oo. For every n, set T(,y = inf{t > 0 : |B;| > R,}. Prove that, for every
n > 1 and every x € D such that |x| < R,

u(x) = Ex [g(BTK) I{TK<T(,,)}] + Ex [u(BT(n)) 1{T(,,)<TK}]-

(2) Prove that, up to replacing the sequence (R,),cN by a subsequence, we can
assume that there exists a constant « € R such that, for every x € R,

lim E[u(Br,)] =a.
n—oo
(3) Deduce from questions (1) and (2) that

Iim u(x) =«
|x]—00

and then prove that, for every x € D,
u(x) = Ex[g(Bry) L{1g <o0}] + ¢ Pe (T = 00).

(4) Conversely, verify that, for any « € R, the right-hand side of the last display
gives a solution of the Dirichlet problem in D with boundary condition g.



Appendix A
A Few Facts from Functional Analysis

In this appendix, we recall some basic results about Hilbert spaces and Banach
spaces, which are used in the text. Proofs of these results can be found in [22] or in
most textbooks on functional analysis.

Normed Linear Spaces and Banach Spaces

Let E be a linear space over the field R. A norm on E is a mapping x +— ||x|| from
E into R that satisfies the following properties:

o Jlx +yll < lx|l + ||yl for every x, y € E (triangle inequality);
* |lax|| = |a| ||x|| forevery x € E and a € R;
* |lx|| =0if and only if x = 0.

One says that (E, || - ||) is a normed linear space. The norm induces a distance d
on E, which is defined by the formula

dx,y) = |lx =yl
The normed linear space (E, | - ||) is called a Banach space if it is complete for the
distance induced by the norm. In other words, if (x,),en is a Cauchy sequence in
E, meaning that

lim  ||x, — x,ll =0,
m,n— 00

there exists x € E such that the sequence (x,),cN converges to x.
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396 A A Few Facts from Functional Analysis

A linear form on E is a linear mapping from E into R. A linear form @ is
continuous if and only if

l@]l = sup [®(x)] < oo,

lxl<t
and we have then
(@) < (Il xll

forevery x € E. The space of all continuous linear forms on E is denoted by E’, and

(E’, Il - ) is a normed linear space called the (topological) dual of E. The quantity
[ll@]|| is called the operator norm of @.

The dual space (E’, ||| - |I|) of a normed linear space (E, || - ||) is always a Banach
space (even if (E, || - ||) is not a Banach space).

The following special case of the Hahn-Banach theorem is used in this book only
to construct certain counterexamples.

Theorem A.1 (Hahn-Banach) Ler (E, || - ||) be a normed linear space, and let
F be a linear subspace of E. Let ¢ be a linear mapping from F into R such that
o) < |yl for every y € F. Then, there exists a continuous linear form @ on E
such that we have both @ (y) = ¢(y) foreveryy € F and ||®||| < 1.

Hilbert Spaces

Let H be a linear space over the field R. A scalar product on H is a mapping
(x,y) = (x,y) from H x H into R which satisfies the following properties:

e (x,y)={(y,x)foreveryx,y e H;

e (x,y+2z) = {x,y)+ (x,z) and (ax,y) = a(x,y) for every x,y,z € H and
a eR;

* (x,x)>0foreveryx € H, and (x, x) = 0 if and only x = 0.

Given a scalar product on H, the formula

]l := /(e x)

defines a norm on H. The triangle inequality for this norm is deduced from the
Cauchy-Schwarz inequality

[, ) < llx iyl

foreveryx,y € H.
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If the normed linear space (H, || - ||) is complete (for the distance induced by the
norm), we say that (H, (-, -)) is a (real) Hilbert space.

In the following statements, we consider a Hilbert space (H, (-, -)). The following
theorem applied with H = L?(E, A, 1) plays a key role in the proof of the Radon-
Nikodym theorem (Theorem 4.11).

Theorem A.2 (Riesz) Foreveryy € H, define a continuous linear form @, on H
by setting

Dy(x) = (x,y)
for every x € H. Then the mapping y +— @, is a linear isometry from H onto the
dual H', meaning that it is linear and bijective, and |||<Dy ||| = ||y|l foreveryy € H.

We now state (a special case of) the projection theorem in a Hilbert space, which
is used in Chapter 11 to give an interpretation of conditional expectation.

Theorem A.3 Let F be a closed linear subspace of H, and let x € H. Then there
is unique element of F denoted by pr(x) such that

lx — pr(x)|| = min{llx — y|| : y € F}.

Furthermore, pr(x) is characterized by the two properties

* prx) € F;
e (x —pr(x),y) =0, foreveryy € F.

pr(x) is called the orthogonal projection of x on F.
Two elements x and y of H are said to be orthogonal if (x, y) = 0.

Proposition A.4 Let (x,),en be a sequence of pairwise orthogonal elements in a
Hilbert space H. Then the limit

oo oo
exists in H if and only if Z (B ||2 < o0o. This limit is denoted by an, and we

n=1 n=1
have

o0 o0
2
_ 2
|| =2 .
n=1 n=1
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We finally give two statements that are used in our construction of Brownian
motion in Chapter 14. We say that a sequence (e;),ecN of elements of H is an
orthonormal system if we have

* (em,en) =0foreverym,n € N,m # n;
* Jlexll =1 foreveryn € N.

We say that (e;,),en is an orthonormal basis of H if it is an orthonormal system
and moreover the linear space spanned by {e, : n € N} is dense in H.

Theorem A.5 Suppose that (e;),eN is an orthonormal basis of H. Then, for every
x € H, we have

o]

2 2
> txien) = Il
n=1
and
o
X = Z(X’ en)en.
n=1

The series in the second display of the theorem converges in the sense of
Proposition A.4.

The last statement shows that an isometric mapping between two Hilbert spaces
can be constructed by mapping an orthonormal basis of the first space to an
orthonormal system in the second one.

Proposition A.6 Let H and K be two Hilbert spaces. Without risk of confusion, we
use the same notation || - || and (-, -) for the norm and the scalar product on both
H and K. Suppose that (e,),eN is an orthonormal basis of H and (fy)neN is an
orthonormal system of K. Then there is a unique mapping ¥ from H into K such
that:

* W is linear and isometric, in the sense that |¥ (x)|| = ||x|| for every x € H;
* Y(ey) = fuforeveryn € N.

Moreover, for every x € H,

e¢]

W(x) =) (x,en) fu-

n=1



Notes and Suggestions for Further
Reading

We provide below some suggestions for further reading. We emphasize that the list
of references is very far from being exhaustive. There is a huge number of books
dealing with the same topics at a comparable or more advanced level.

Chapters 1-7 The classic book of Rudin [22] is still a good source for measure
theory and its applications in analysis. The books by Billingsley [2] and Dudley
[7] give a detailed treatment of measure theory with a view to applications in
probability. Both [22] and [7] also provide a glimpse of the functional analytic
approach to measure theory, where, roughly speaking, measures are constructed
from linear forms defined on an appropriate space of functions. Stroock [24]
presents measure theory with an emphasis toward analytic applications.

Chapter 8 We have made no attempt to trace back the history of probability theory.
Much information about this history (and the history of measure theory) can be
found in the notes of the books by Dudley [7] and Kallenberg [10], which are
also excellent sources for more advanced study. General references on probability
theory at a level comparable to the present book include Chung [4], Durrett [8] and
Grimmett and Stirzaker [9].

Chapter 9 Our elementary approach for constructing sequences of independent
real random variables in Section 9.4 is sufficient for our needs in the present
book, but a more elegant (and more general) method would be to extend the
construction of product measures in Chapter 5 to the case of infinite products,
see for instance Chapter 8 in [7]. More generally, the Kolmogorov extension
theorem (see, in particular, Chapter 7 of Billingsley [1]) allows one to construct
random processes with prescribed finite-dimensional marginals, and this applies
to independent sequences as a very special case. A more elegant approach to the
Poisson process calculations in Section 9.7 can be given via the concept of Poisson
measures, see Kingman [11].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 399
J.-F. Le Gall, Measure Theory, Probability, and Stochastic Processes,
Graduate Texts in Mathematics 295, https://doi.org/10.1007/978-3-031-14205-5



 889 4612 a 889 4612 a
 
https://doi.org/10.1007/978-3-031-14205-5

400 Notes and Suggestions for Further Reading

Chapter 10 1 learnt of the proof of the strong law of large numbers that is
presented in this chapter from Neveu [15]. Other proofs are given in Chapter 12 as
applications of martingale theory. The weak convergence of probability measures
can be extended to measures on abstract metric spaces, see Billingsley [1] for a
comprehensive account. The proof of the central limit theorem (Theorem 10.15)
via characteristic functions may appear mysterious: see, in particular, Chapter 2 of
Stroock [23] for proofs of more general statements that avoid using characteristic
functions.

Chapter 11 Conditional distributions as defined in Definition 11.16 are usually
called regular conditional distributions. This notion can be extended to conditioning
with respect to a sub-o-field rather than with respect to a random variable X as in
Definition 11.16. See Chapter 6 of [10], which also gives a proof of Theorem 11.17.

Chapter 12 Both Williams [25] and Neveu [16] are good sources for more advanced
study and applications of discrete-time martingales. Continuous-time martingales,
which are briefly mentioned at the end of Chapter 14, are studied in the reference
book [6] by Dellacherie and Meyer (see also Revuz and Yor [20], Rogers and
Williams [21], and Le Gall [12]).

Chapter 13 See Norris [17] for more about (discrete-time) Markov chains in a
countable state space, as well as for continuous-time Markov chains. Both [17] and
Brémaud [3] also discuss the use of Markov chains in various areas of applications.
Revuz [19] deals with Markov chains with values in general state spaces. In the
setting of Theorem 13.33 giving the convergence of the law of process at time n
to the invariant probability measure, a crucial question is to get information on the
speed of this convergence: see Levin et al. [13] for a thorough discussion of this
problem.

Chapter 14 The construction of Brownian motion in the proof of Theorem 14.3 is
known as Lévy’s construction. The approximation by random walks that is outlined
in the first section holds in a strong form known as Donsker’s theorem, see in
particular Billingsley [1]. The continuity of sample paths (property (P2) of the
definition of Brownian motion) is usually obtained via the Kolmogorov lemma,
which applies to more general random processes (see e.g. [12] or [20]). Morters and
Peres [14] is an excellent source for various properties of Brownian motion and its
sample paths. The connection between Brownian motion and harmonic functions is
more commonly derived via the Itd formula of stochastic calculus, see, in particular,
[12] and [20] for a presentation and various applications of stochastic calculus.
Much more about connections between Brownian motion, harmonic functions and
classical potential theory can be found in Port and Stone [18].
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Index

Symbols
L? space, 64
o -additivity, 6
o-field, 4
generated by a collection of sets, 4
generated by a random variable, 150
of the past before a stopping time, 264, 366
o -subadditivity, 42

A

Absolutely continuous measure, 75
case of a signed measure, 112

Absolute moment, 151

A.e., almost everywhere, 24

A.s., almost surely, 138

Atom of a measure, 9

B
Backward (super)martingale, 290
Ballot theorem, 163
Banach space, 395
Bernoulli distribution, 146
Bernstein polynomial, 223
Bertrand’s paradox, 144
Beta function, 130
Bienaymé-Chebyshev inequality, 154
Binomial distribution, 147
Birth and death process, 344
Blumenthal’s zero-one law, 362
Borel

o-field, 4

function, 10

set, 4
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Borel-Cantelli lemma, 177
Bounded random variable, 138
Brownian motion, 352
canonical construction, 361
exit distribution from a ball, 388
Holder continuity, 392
local maxima, 391
recurrence and transience, 386
sample path, 353
scaling invariance, 361
simple Markov property, 361
strong Markov property, 367
zero set, 391

C
Canonical Markov chain, 312
Cauchy distribution, 148
Cauchy-Schwarz inequality, 66, 152
Centered random variable, 151
Central limit theorem, 219
multidimensional, 223
Change of variables formula, 123
Characteristic function, 156
Classification of states, 320
Coin-tossing process, 205
biased, 286
Completion of a o-field, 48
Conjugate exponents, 64
Construction of an independent sequence, 181
Construction of independent random variables,
172
Convergence in measure, 38
Convergence of random variables
almost sure, 200
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in distribution, 209

in L?, 200

in probability, 200
Convolution

of functions, 33, 95

of probability measures, 182

semigroup, 186
Coordinate mapping, 312
Coordinate process, 312
Counting measure, 8
Coupling method, 338
Coupon collector problem, 224
Covariance, 154
Covariance matrix, 154

D
Arcsine distribution, 195
De Moivre theorem, 220
Density of a measure, 23
Density theorems in L?, 71
Diffeomorphism, 122
Dirac measure, 8
approximation, 97
Dirichlet problem
boundary condition, 374
classical, 374
discrete, 341
Distribution function, 149
Distribution of a random variable, 139
Dominated convergence theorem, 30, 152
Doob’s maximal inequality, 275
Doob’s upcrossing inequality, 267
Duality LP—L4, 113
Dyadic expansion of a random number, 180

E

Egoroff’s theorem, 16

Ehrenfest’s urn model, 327

Empirical measure, 217

Ergodic theorem for Markov chains, 333
Event, 136

Expectation, 141

Expected value, 141

Exponential distribution, 148

Exterior cone condition, 378

F
Fatou’s lemma, 25, 152
Filtered probability space, 258
Filtration, 258

backward, 290

Index

canonical, 258

dyadic, 258
Finite-dimensional marginals

of Brownian motion, 353

of the Poisson process, 195
Fourier transform, 32

injectivity, 157
Fubini-Lebesgue theorem, 91
Fubini-Tonelli theorem, 90
Function of bounded variation, 119

G

Galton-Watson branching process, 269, 310
Gambler’s ruin, 286, 341
Gamma distribution, 148
Gamma function, 127
Gaussian distribution, 148
Gaussian vector, 221
Generating function, 161
Geometric distribution, 147
Glivenko-Cantelli theorem, 226
Grouping by blocks, 175, 177

H
Holder inequality, 65, 152
Hahn-Banach theorem, 117, 396
Hardy’s inequality, 82
Harmonic function, 374
analytic characterization, 381
for a Markov chain, 338
Hausdorff dimension, 60
Hewitt-Savage zero-one law, 294
Hilbert space, 397
Hoeftding’s inequality, 198
H-transform of a Markov chain, 345
Hypergeometric distribution, 162

|
Identically distributed, 139
Inclusion-exclusion formula, 163
Increasing reordering, 164, 190
Independence
of o-fields, 169
of an infinite family, 176
of events, 168
of random variables, 169
Indicator function, 8
Integrable, 27
Integral of a measurable function
case of an integrable function, 27
complex case, 29
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nonnegative case, 20 Markov property of Markov chains, 306
with respect to a signed measure, 111 simple, 314

Integrals depending on a parameter, 31 strong, 316
continuity, 31 Markov’s inequality, 153
differentiability, 33 Martingale, 258

Integration by parts, 94 closed, 260

Invariant measure, 326 in continuous time, 383

Maximum principle, 382
Mean of a random variable, 141

J Measurability for an outer measure, 42
Jacobian, 123 Measurable function, 10
Jensen’s inequality, 66, 153 Measurable set, 4
Jordan decomposition, 109 Measure
o -finite, 9
diffuse, 9
K finite, 9
Kakutani’s theorem, 301 positive, 6
Kesten-Stigum theorem, 271 Minkowski’s inequality, 67
Khintchine inequality, 198 Moments of a random variable, 151
Kolmogorov axioms, 136 Monotone class, 13
Kolmogorov’s criterion for reversibility, 345 Monotone class theorem, 13
Kolmogorov’s zero-one law, 204 Monotone convergence theorem, 21, 152
L N
Lack of memory, 148 Negligible set, 48
Laplace transform, 160 Non-measurable set, 55, 61
Law of a random variable, 139 Normal distribution, 148
Law of hitting time Normed linear space, 395
for Brownian motion, 370 dual, 396

for simple random walk, 287
Law of large numbers

strong law, 206, 293, 298, 300 (0]
weak law, 183 Offspring distribution, 270
Lebesgue decomposition, 76 Operator norm, 396
Lebesgue measure, 8 Optional stopping theorem, 265
existence, 45 for a supermartingale, 288
onR?, 47 for a uniformly integrable martingale, 284
uniqueness, 15 Orthonormal basis, 354, 398
on the unit sphere, 128 Orthonormal system, 354, 398
Lévy’s theorem, 215 Outer measure, 41
Linear form, 396 Outer regular measure, 71

Linear regression, 155

Lipschitz function, 71

Locally compact space, 58 |
Period of a Markov chain, 336
Point measure, 8

M Poisson distribution, 147

Marginal distribution, 143 Poisson kernel, 388

Markov chain, 304 Poisson process, 188
aperiodic, 336 Markov property, 192
canonical construction, 312 Polar coordinates, 126
irreducible, 321 Polya’s urn, 300

recurrent irreducible, 322 Portmanteau’s theorem, 212
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Potential kernel, 318
Predictable sequence, 262
Probability density function, 140
Probability measure, 9, 136
Probability space, 136
Product o-field, 5, 85
Product measure, 87

relation with independence, 170
Projection in a Hilbert space, 397
Pushforward of a measure, 13

R
Radial function, 130
Radon measure, 58
Radon-Nikodym derivative, 76
Radon-Nikodym theorem, 76
for signed measures, 112
Random process
adapted to a filtration, 258
continuous-time, 352
discrete-time, 257
Random variable, 138
with a density, 140
discrete, 139
Random vector, 138
Random walk, 260
on a graph, 309
on the binary tree, 343
simple, 269
on Z4,309
Recurrent state, 317
Reflection principle, 368
Regression line, 156
Regularity of Lebesgue measure, 51
Relations between different convergences, 203
Restriction of a measure, 8
Reversible measure, 326
Riemann integral, 53
Riemann-Lebesgue lemma, 75
Riesz-Markov-Kakutani theorem, 59
case of signed measures, 118
Riesz theorem, 397
Riesz theorem on L”, 68

S
Sample path, 353
Scalar product on L2, 71

Index

Scheffé’s lemma, 36, 203
Separable metric space, 5
Series of independent random variables, 279
Shift, 314
Signed measure, 105
Simple function, 17
integral, 18
Singular measure, 76
Standard deviation, 153
Step function, 53, 75
Stieltjes integral, 58
Stochastic matrix, 303
Stone-Weierstrass theorem, 99
Stopping time
in continuous time, 365
in discrete time, 263
Submartingale, 258
Sum of independent random variables, 182
Supermartingale, 258

T

Total mass of a measure, 6

Total variation of a signed measure, 106
Transient state, 317

Transition matrix, 304

Transition probability, 304

Translation operator, 371

U
Uniform distribution

on a finite set, 146

on an interval, 147
Uniformly integrable, 280
Upcrossing number, 266

\'%
Variance, 153
Volume
of the unit ball, 99
of the unit sphere, 128

W

Wald’s identity, 298

Weak convergence of probability measures,
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