GODEL'S THEOREM

Limits on Logic

n the early 1930s, Kurt Godel, a German mathematician, attempted to show
that the predicate calculus (see Chapter 58) was “‘complete” — that one can
obtain mechanically (in principle, at least) a proof of any true formula ex-
pressed in that calculus. His failure to do this was crowned by the discovery
that the task was impossible: Certain formal systems, including arithmetic, were
incomplete in this sense. The discovery staggered the world of mathematics.

As part of David Hilbert's turn-of-the-century program for mathematics, it had
been expected that all mathematics, when it was suitably formalized in a system
like the predicate calculus, would turn out to be complete. But Godel discov-
ered that not even arithmetic was complete. His now-famous theorem states
that in any sound, consistent, formal system containing arithmetic there are true
statements that cannot be proved — statements the truth of which we may know
by other means but not by any formal, step-by-step decision process.

From Hilbert’s time onward, a succession of researchers had attempted to
formulate such decision processes in various ways. They had in common, how-
ever, the adoption of certain axioms and a variety of formalisms for manipulat-
ing the axioms by certain rules to obtain new statements that, given the truth of
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the axioms, were true themselves. One such system was the theory of recursive
functions, which Godel helped to develop. Recursive functions amount to yet
one more description of what it means to compute. (See Chapter 66.)

The heart of Godel's method was to encode each possible statement in the
predicate calculus, regarded as a language, by a special numerical code called
its Godel number. Briefly, the process has three steps.

Set up axioms for the predicate calculus along with a rule of inference by
which one can get new formulas from old ones.

Set up axioms for standard arithmetic in the language of predicate calculus.

Define a numbering for each formula or sequence of formulas in the resulting
formal system.

By using easy-to-read implicative language, the axioms for the predicate
calculus may be listed as follows:

Vy(F— (G— F))

Yyl (F— (G— H)) = (F— G) = (F— H)))

Vy((OF—1G) = ((OF— G) — F)))

Vy,(Vx(F— G) = (F— VxG)) provided Fhas no free occurrence of x
Vy((F— G) = (Vy,F— Vy,G))

Vy(VxF(x) — F(y)) provided that y is not quantified when it is
substituted
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Once the notation used above is understood, the axioms will seem reasonably
self-evident, the very thing upon which to base a theory of mathematical deduc-
tion.

Symbols suchas F, G, and Hare understood to stand for “formulas”; Vy;stands
for an arbitrary string of variables suchas y;, 3, . . . , ¥, all universally quanti-
fied; one reads such symbolism as ‘“for all y,” or “forall y;, 35, . . . , . The
symbol — stands for implication and 1stands for negation.

The various formulas involved in the axioms above may or may not contain
the variables which are quantified outside them, but in any case axiom 4 cannot
be applied unless whenever variable xoccurs in formula F, it must be quantified
within F. Axiom 6 cannot be applied unless y is not quantified within F(y) (the
formula one gets by replacing all free occurrences of x in Fby y).

The axioms themselves are now easily understood. For example, axiom 1
may be read, “For all possible values of their free variables, if Fis true, then
G— F.” In other words, a true formula is implied by any formula. Axiom 2 says
that implication distributes over itself, in effect. And axiom 3 says that if both 711G
and Gare implied by “1F, then "1Fcannot be true, in other words, Fmust be true.
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As a final example, axiom 4 says, “For all possible values of their free variables
(as always), if F— G for all x and if x has no free occurrence in F, then F—
VxG.”

To the previous set of axioms must be added a rule of inference like the
following:

If Fand F— G, then G.

One notes that this rule does not lie at the same level as the axioms, in a sense: It
is intended that whenever we are making a deduction — essentially a chain of
formulas—and notice formulas F and F— G both occurring as earlier
members of the chain, we may add G to the chain.

By the “standard arithmetic” is meant simply the Peano postulates for the
natural numbers, namely,

. Vx 100 = sx)

. Vxy (sx=sy) = (x=1)
Vxx+0=x

Vxy x+ sy=s(x+ y)

. Vxp xXsy=xXy+x
. Vx xX0=0 '
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Here, s denotes the successor function which for each natural number x picks
out its successor, x + 1. Thus, postulates 1 and 2 tell us, respectively, that

Zero is not the successor of any natural number.
If the successors are equal, then so are the numbers.

The remaining postulates are similarly easy to understand. However, all six
postulates beg the question of what we mean by equality. This very meaning is
embedded in three additional postulates:

7. Vx x=x
8. Vx 32z (x=3) — ((x=2) = (y=2))
9. Vx,y (x=13) — (A(x,x) — A(x,)))

where A is any formula having two free variables.
Just as we added a special rule of inference to the axioms for the predicate
calculus, so here we add a rule of induction:

(P(0) &Y x(P(x) — P(sx))) —> VxP(x)
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This formula simply encodes the well-known rule of induction: If a predicate P
is true with 0 substituted in it and if whenever Pis true of a number x, Pis also
true of x’s successor, then Pis true for all possible numbers x.

The 15 axioms and two rules listed above are, among them, powerful enough
to give us a formal system for arithmetic in which so many ideas are expressible
and truths provable that we are tempted a priori to imagine that any arithmetic
truth is not only expressible in this system, but also provable there.

Having set up these axioms, Godel went on to the third step in his proof,
namely, to assign a unique number to every conceivable formula in the system
just defined. He did this by assigning a natural number to each of the following
basic symbols:

Symbol Code Number Symbol Code Number

0 1 ] 9
s 2 1 10
+ 3 B 11
X 4 & 12
= 5 = | 13
( 6 v 14
) 7 ~» 15
, 8

Now, given any axiom or formula within our formal system, it is a straightfor-
ward matter to scan the formula from left to right and to replace each symbol in
it by a prime number raised to the power of that symbol’s code number. The
primes used for this purpose are the consecutive primes 2, 3,5,7,11, . . . .As
an example of this procedure, axiom 4 of the standard arithmetic has the follow-
ing Godel number:

%y + sxq3 = 5(x; + x15)
29.310.53.72. 119. 1510. 1710. 195.232.296.319.3710.413.439.4710.5310.597.

The number was obtained by scanning the given expression one symbol at a
time and converting it to the appropriate prime power. Thus x, the first symbol,
has code number 9; so 2, the first prime, is raised to the ninth power. The next
symbol, 1, becomes 3'° because 3 is the next prime and 10 is the code number
for the symbol 1.

Note that the axiom has been altered to accommodate our use above of a
special notation for variables, namely, to use a sort of unary code (consisting of
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consecutive 1s) to yield a system of subscripts for the symbol x. In other words,
x;and x,; may be considered as perfectly general names like xand yin axiom 4
of the arithmetic.

As can be seen in the example above, Godel numbers tend to be enormous.
Nevertheless, they are computable, and given any integer whatsoever, it is
possible to compute the expression it represents (if any) by finding all its prime
factors and grouping these as powers in order of increasing primes.

We are now ready to enter the very heart of Gddel’s theorem by considering
the following predicate:

Proof(x,y,2)

Here, Proof(x,y,2) is a predicate having the following interpretation: “xis the
Godel number of a proof X of a formula ¥ (with one free variable and Godel
number y) which has the integer z substituted into it.” The “proof X" referred
to here may itself be considered a formula for the purpose of having a Godel
number assigned to it.

Note that the basic symbols to which code numbers were attached did not
include the predicate symbol “Proof” or any other predicate symbol except
equality (=). Indeed, “Proof(x,),2)" is just our own shorthand for an im-
mensely long expression with three free variables x, y, and z—or, in Goédel’s
notation, x;, x;;, and x;;;. This expression includes a number of procedures,
including the following:

* 1. Given an integer, produce the string of which it is the Gédel number.
2. Given a string, check whether it is a formula.
3. Given a sequence of formulas, check whether it is a proof for the last
formula in the sequence.

All these procedures are computable and, as Gédel showed, themselves
reducible to formulas within the formal system defined above. Before we show
how this predicate is used in Godel’s theorem, there is one small detail to clean
up. Namely, we must state what a “formula’ really is: The definition embedded
in procedure 2 above would amount to an inductive definition of a properly
formed arithmetic expression and the ways in which such expressions may be
combined legally with the logical connectives & and — or quantified over by 3
and V. For example, 3x,(X;;(x) = X;;;(x)) is a formula but 1X)3x,;, 1=))
is not.

We are now ready to consider a very special use of the predicate under
consideration. Suppose that the formula Yis fed its own Godel number and that
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we deny the existence of a proof within the formal system of the resulting
formula:

“13xProof(x,3,3)

In words, the formula Proof(x,,y) says, “xis the Godel number of a proof of
the formula obtained by substituting its own Godel number y for its one free
variable.” Consequently, to write "13x in front of this is to deny the existence of
such a proof.

Now any such predicate expressible in our formal system has a Gédel num-
ber, and it is amusing to consider the cartoons in Figure 5.1.

In the first instance, we have the single-free-variable expression
T 3xProof(x,y,y) preparing to eat y. Its own Godel number is denoted by g. In
the next instance, the character is given its own Godel number to eat, and upon
its ingestion the character is transformed to a predicate with no free variables —
and hence no mouth. Naturally, even the resulting formula has a Godel
number, g’.

Godel’s Theorem: "13xProof(x,g,g) is true but not provable in the formal
arithmetic system.
The proof of this theorem takes only a few lines:

Suppose T3xProof(x,g,g) is provable in the system, and let p be the Godel
number of its proof P. We then have

Figure 5.1 A certain formula ingests its own Godel number
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Proof(p,g,2)

is true since Pis a proof of Gwith gsubstituted for its one free variable. But, of

course, Proof(p,g,g) contradicts 13xProof(x,g,g), and we are left with the

conclusion that no such proof P exists.

The formula T 3xProof(x,g,g) is certainly true because we have just estab-
lished the claim which it makes about itself —that it has no proof!

Such a proof,where a two-variable predicate is given the same value for both
itsarguments, is called a proof by diagonalization, and it crops up frequently in
the theory of infinite sets and mathematical logic. Cantor was the first to use
such an argument in showing that the real numbers are not countable.

Are there true statements which mathematicians are trying to prove at this
very moment, but never will? What about Goldbach’s conjecture which states
that every even number is the sum of two primes? Certainly, no one has proved
this statement so far, yet most mathematicians think it is true.

The struggle to formalize mathematics in a mechanical way led to the discov-
ery of a basic and deeply seated problem in mathematics itself. The discovery
was to be paralleled a few years later when the attempt to formalize “effective
procedures” led to the discovery of a basic inadequacy in computers. There are
some tasks just as impossible for computers (see Chapter 59) as for mathemati-
cians.

Problems

1. Write out the Godel numbers for the integers 0, 1, 2, and 3.

2. Isitpossible for two different expressions to have the same Godel number?
If s0, give an example. If not, explain the impossibility.

3. Whatis the difference between our proof of Gédel’s theorem and a proof in
the formal arithmetic system? Can our proof ever be expressed as a proof in this
system?
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