पFRLCATTI/ ©

 MIDLLLHRE

 MIDLLLHRE}

Tomoko Fuse
come realizzare solidi geometrici nuove forme di creatività con l'Origami

TOMOKO FUSE è nata nel 1951 a Niigata; si è laureata in botanica presso I'Università di Chiba.
Ha cominciato a fare Origami con il maestro Toyoaki Kawai specializzandosi nell'Origami creativo.
Ha scritto decine dillibri sull'Origami Modulare, e continua a scriverne, ma è stato con questo, il primo, che siè resa famosa in tuttoil mondo. La bellezza e l'originalità dei suoi modelli non finiscono dl stupire anche gli origamisti piu espertie qualificat

पFillirnll TMロロLLIME

come realizzare solidi geometric
nuove forme di creatività con l'Origami

Unit Origami
a Shobo Co., Ltd. Tokyo, Japan
ko Fuse
n rights arranged with Chikuma Shobo CO., Ltd.
oreign - Rights Centre
liaki Huzita e Chiara Ziliani

Proprietà artistica e letteraria riservate 1988
|l Castello/Collane Tecniche/Milano
via C. Ravizza 16
Tutti i diritti sono riservati. La riproduzione del testi e del disegni e fotografie, nonché l'utilizzo del modelli, per qualsiasi uso ed in qualsiasi forma, ad eccezione degli ambienti scolastici e familiari, sono rigorosamente vietati, salvo accordi scritti con la Casa Editrice II Castello.

Fotocomposizione Jo-Type, Pero (M)
Stampato dalla Tecnografica Milanese, Fizzonasco di Pieve Eman. (MI)

L'Origami modulare fa pensare a schemi rigidl, strettamente geometrici, e, pur destando una certa curiosità, interessa attualmente un numero limitato di origamisti. Ora, grazie alla traduzione del prof. Humiaki Huzita e Chiara ziliani, questo meraviglioso libro di Tomoko Fuse farà cambiare dea a moltissime persone. É quello che é successo a me, appassionata dl Drigami creativo: attraverso le spiegazioni romanticamente giapponesi dell'autrice, ho scoperto tutto il fascino e l'infinita creatività che anche un Origami modulare puó contenere.

Nilva Pillan

AVVERTENZA DEI TRADUTTORI

Questo libro è un piccolo gioiello. La perfezione e la bellezza dell'origami, secondo i suoi sviluppi più moderni e ptù originali, sono perfettamente espressi da Tomoko Fuse. Nell'edizione originale giapponese il testo è considerato un grande successo, apprezzato dagli origamisti per la validità del modelli tutti Inediti e per gli eccellenti disegni che facilitano la realizzazione. La versione italiana ha visto la luce grazie ai suggerimenti ed ai consigli in fase di traduzione di Nilva Pillan. Si ringrazia anche Mariuccia Paparo per la revisione della traduzione stessa.
Alla traduzione letterale si è preferita una interpretazione libera del pensiero dell'Autrice con la speranza di averne compreso lo spirito e la logica. In ciappone questo libro fa parte di una collana per ragazzi, quindi il discorso è semplice e ricco di aneddoti. Alcune cose non essenziali sono state trascurate La maggior preoccupazione è stata che tutti i lettor| capissero e riuscissero a piegare ed assemblare; si è tradotto quindi con il foglio in mano verificando, plega per piega, che le parole corrispondessero chiaramente alla realtả dell'Origami.

Humiaki Huzita e Chiara Ziliani

INTRODUZIONE

Non avevo mai immaginato che si potesse rivoluzionare l'origami tradizionale, ma la frase iniziale del libro del grande origamista Kunihiko Kasahara: Allegra passeggiata fra i Cubi con rorigami* ha colpito la mia attenzione. La frase diceva: "Questa è la storia del nuovo Origam"". È stato come se una porta si fosse spalancata davanti ai miei occhi.

Per la verità tempo prima avevo visto un tentativo di Origami modulare da parte di Sonobe; nel suo libro Color Box si costruisce un cubo con sel fogli. Anche questo mi aveva sorpresa e interessata, si da farmi pensare che in questo mondo esistono ancora persone che inventano cose meravigliose.

Ė stato però lincontro con il hibro di Kasahara che mi ha convinta a seguire la nuova strada dell'Origami modulare. Se prima, piegando per lo più animali, fior e facce di persone, provavo la sensazione di creare, con l'origami modulare l'impressione è stata di scoprire pieghe misteriosamente nascoste nel fogtio di carta quadrata. La gioia di scoprire e diversa dalla sensazione che si prova nel creare. Come nei puzzle o negli indovinelli le soluzioni e le risposte esistono e sono presenti, anche se nascoste da qualche parte, cosi succede nell'Origami modulare.

Allora che cos'e l'origami modulare? Partiamo insieme per questo viaggio alla scoperta di un mondo veramente nuovo.

Importante

L'edizione italiana segue per lo sviluppo dei disegni di alcuni modelli l'impaginazione originale glapponese, e pertanto la lettura dei disegni procede da destra a sinistra.
Ciò non comporta alcuna difficoltà di comprensione operativa, essendo poi i disegni stessi numerati in progressione.

SIMBOLOGIA

Eccol simboll utilizzat| nel libro ed ill loro significato.

piegare e riaprire
voltare il modello
intascare
modello ingrandito
schiacciare

MODELLI TRADIZIONALI E FORME VARIE
$\Delta \pi$

Gioco tradizionale giapponese da bambini, a forma di piastra; |l gioco consiste nel tentare di rovesciare la piastra dell'avversario lanciando la propria L'Origami modulare è un nuovo modo di piegare la carta, ma giá nell'origami tradizionale esisteva quaiche elemento; ad esempio il menko consiste in due modull speculari uniti fra loro.

Anche questo è un modello tradizionale. È un po' grosso e difficle da piegare, ma è pesante e vola bene ed è bello con le sue punte aguzze quando lo si impugna per il lancio.

10

stella a 5 e 6 punte

crisantemo (14 moduli)

Il numero di moduli puó aumentare: 5, 6, 7... cosi la figura iniziale della stella a cinque punte si trasforma gradualmente in fiori: dalia, crisantemo ecc.

Alette e tasche in sostituzione della colla

Fino a questo punto il modello completo era piatto, ora iniziano i modelli solidi. Come già avrete capito, nell'Origami modulare non si usa colla, ma si uniscono vari moduli intascando le alette nelle corgispondenti tasche. Nell'operazione di assemblaggio, perció; dovrete essere molto precisi. Divertimento e difficoltá dipendono dalla rigorosa corrispondenza fra alette e tasche, 12 moduli, 18, 24, 30, divertitevi a variare le combinazioni. Si camblano le forme usando il modulo o come solido (cappello) o schiacciato.

30 moduli

sopra: 24 modull; sotto; 18 modull

12 moduli cappello a cono (sinistra) e con modulo aperto (destra)

Un giorno ho ricevuto una lettera da due fratellini di 6 e 9 anni, appassionati d Origami modulare. Ho spedito loro questo modulo ed essi, dopo aver fatto molte prove, mi hanno risposto che con 12 moduli si potevano ottenere due modell diversi, usando per uno ill modulo schiacciato e per l'altro il modulo aperto come un "cappello a cono": cosi ho deciso di dare a questo modulo il nome di cappello a cono.

sinistra: 12 modulis destra: 6 moduli

30 moduli

5 modulf

mettere un dito all'interno e plegar a metà

Nella pagina accanto è illustrato, visto da due angolazioni diverse, il modello ottenuto con 30 moduli.

Kompeitoo

Capitolo II

FACCIAMO LE SCATOLE

Con

Forse a causa del colori brillanti della carta, forse per la bellezza insita nelle figure geometriche, forse soprattutto per la loro utilità, le scatole sono gli Origami modulari che hanno maggior successo fra 1 miel amicl. Quando dicevo: "per questo non ho usato nè forbici nè colla, prova a disfario", i miei amici timidamente separavano i vari modull per poi ricomporre la scatola ammirando il perfetto meccanismo dell incastro, increduli che con l'origami si potesse giungere a tanto. Non tutti gili incastri sono peró ugualmente solidi, in alcuni casi la scatola si disfa facilmente.
La scatola in origami è un TAMATEBAKO; un porta-gioiellini, ma per moltill vero tesoro non é contenuto nella scatola, ma consiste nel capire ed apprezzare il misterioso rapporto che si crea automaticamente durante la piegatura tra ba se e coperchio che si inseriscono perfettamente uno nell'altro.
Cl sono diverse scatole difficili da piegare e anche da incastrare. Poiché la scatola si può considerare come l'applicazione dei risultati ottenuti nel capitoli ill elv, se ora incontrate delle difficoltá andate avanti, poi ritornate piú tardi alla piegatura delle scatolee non incontrerete le primitive difficoltả.

SCATOLA QUADRATA E OTTAGONALE

Qui è spiegato come ottenere l'angolo a 90 gradi e a 45 gradi. É talmente semplice e naturale che non è necessaria alcuna dimostrazione. Se ci fermiamo un momento a riflettere vediamo che il foglio di carta quadrato e l'azione de piegare contengono il metro, il goniometro, il compasso. Le divisioni (frazionii) s ottengono senza fare calcoli.
Quale semplicità ed essenzialità! II foglio di carta quadrato nasconde un'attrez zatura da disegno estremamente precisa. Se finora abblamo piegato meccanicamente senza pensare, ora cerchiamo, riflettendo scientificamente, di capire queste caratteristiche per poterle usare meglio. Pensate a quale incastro sarả più solido, cosi potrete ottenere delle varianti di vostro gradimento.

ottagono regolare

quadrato

Pieghe preparatorie

Nell'Origami modulare le pleghe preliminari sono molte e molto importanti per due motivi: uno per la misura e l'altro per facilitare l'incastro. Attenzione, se si dimentica una piega, non otterrete una bella forma nitida. Variando leggermente il procedimento di questo coperchio si possono ottenere forme diverse, si potrá ottenere un piccolo manico, oppure cambiare il gioco del colore:

lincastro del modulo A

I quattro moduli da preparare devono essere uguali, L'ultimo modulo è sempre un po' difficile da incastrare, per cuil è consigliabile unirll tuttie equattro insieme. Pensate vol a trovare una soluzione dincastro per il modulo B e per la variante del coperchio con il manico aiutandovi con la fotografia.

(14)

Le pleghe preliminari sono molte ed anche il procedimento per ottenere la tridimensionalità potrebbe essere difficile, ma non scoraggiatevi, dovrete conquistario. Anche quil, invertendo la direzione di una piega, si può ottenere un diverso gioco di colori, sfruttando il contrasto fra ll lato bianco e ill lato colorato del foglio.

piegare fino al segno o

(B)

Diminuendo il numero di moduli necessari per la scatola, la piegatura diventa piư difficile ed inoltre la scatola risuita più piccola in confronto a quella otte nuta con quattro moduli. Dopo aver piegato I moduli e ottenuta la scatola, sarebbe un peccato disfarla, ma per studiare come sono state ottenute le pieghe é utile smontarrla tutta. Eil migliore metodo per scoprire un nuovo modulo.

scatola piccola e scatola grande (pagg. 39 e 41)

Mi piace molto questa graziosa scatoletta; spesso la disfo davanti agli occhi del miei amici e chiedo loro di ricomporla e mi diverto se questi entrano in crisi. Ho chiamato "Tsuzura grande" la scatola profonda e "Tsuzura piccola" quella poco profonda, ricordando le due vecchie della leggenda "La casa dei passeri". Un passero si nutriva del cibo posto sulla terrazza di una casa abitata da due vecchie. Una, avara e cattiva, un giorno scopri il passero, lo scacció e lo feri. L'altra, buona e generosa, lo curò e nutri amorevoimente. Quando il passero fu guarito invitó la buona vecchia alla casa del passeri sulla montagna e la ricompensò facendole scegliere una scatola. La vecchia scelse quella piú piccola e giunta a casa la trovó piena di gioiell. Saputo ciò anche laltra vecchia volle salire alla casa dei passerl. Fu accolta dal passero che fece scegllere anche a lei una scatola. Avida, scelse la scatola piû grande e pesante pensandöla anch'essa piena di gioiell, ma quando, dopo tanta fatica, arrivò a casa, l'apri e la trovò piena di sassi.

Base e coperchio: giusta adattabilità

Molti bambini che conosco piegano una serie di scatole tradizionali, le inseriscono una nell'altra e le custodiscono come un tesoro. Per queste scatole KASANEBAKO, simill nel concetto creativo alle bambole matriuska (ogni bambola ne contiene una piú piccola), è necessario usare una serie di fogli di misura sempre un poco più piccola e in giusto rapporto. Analogamente quando mostro le mie scatole, tutti mi chiedono se ho usato un foglio di carta piü piccolo per la base e si meravigliano quando spiego che, pur usando fogli uguali, ottengo il coperchio un poco piú largo, quel tanto necessario per chiudere agevolmente la scatola.
In verità anch'io non pensavo di riuscire a fare in modo semplice una base e un coperchio che si adattassero cosi perfettamente. Pensavo sempre di usare due fogli di misure leggermente diverse o di spostare le pieghe. Ma nell'Origami modulare bisogna pensare che il singolo pezzo va ad unirsi in gruppo con altri e che le pieghe devono essere pertanto decise e semplici, quindi non si puó adattare una piccola variazione di pieghe imprecise. Quando tuttavia ho spostato la mia attenzione dal singolo modulo all'insieme del moduli ho cominciato a piegare in modo diverso. Se fossi stata fortunata avrel trovato la soluzione, ed è stato sorprendente constatare che i miei numerosi tentativi avevano dato un risultato. Perché il coperchio e la base si adattano pur avendo usato fogli della stessa misura? Ho disfatto base e coperchio ed ho osservato che larghezza e

scatola quadrata mulinello

scatola piccola
profonditá erano diverse; ma la differenza piú notevole era la posizione della carta allinizio, quadrato o rombo (vedi figg. di pag. 41). Avevo scoperto che per la base s'inizia a piegare sulla mediana del quadrato e per il coperchio sulla diagonale. Era veramente una bella sorpresa se si pensa che avevo incominciato a plegare senza un progetto preciso, ma avevo piegato molte scatole. Solo dopo, disfandole e osservandole, ho capito questa regola e in seguito è stato piü semplice.

1

Perché sono propensa a realizzare i coperchi prima delle basi?

Per molto tempo mi sono chiesta perché realizzo prima il coperchio e poi la base, mentre sarebbe più logico il contrario. Riflettendo sono riuscita a trovare due motivi inconsci che giustificano forse ill mio modo di operare. il primo è il desiderio di sfruttare al massimo la carta e l'altro il piacere di soddisfare l'a spetto estetico della creazione. La base della scatola infatti non si vede ed è perció più divertente pensare al coperchio; inoltre è abbastanza naturale fare prima i coperchi se si pensa di non sprecare carta. Fare una base è piú interessante ed impegnativo per quanto riguarda lideazione e la progettazione. Nell'Origami la funzionalitả ha la precedenza, perciò quando piego spesso il risultato per quanto riguarda la bellezza dell'oggetto è del tutto inaspettato. È un piacere pensare al coperchio, mentre è difficile realizzare la base che inoltre deve essere piatta. "Kono hako niwa soko ga nai!" cioé "Questa scatola non ha fondo!" vuole dire che è una cosa molto bella, ma senza utilità concreta. si potrebbe pensare che è facile rovesciare il coperchio che cosi diventa una base. In verità fare ill fondo è piü complesso.
Come ho già detto, l'adatta combinazione di una base e di un coperchio sii può ottenere con carta di uguale misura e senza spostamenti delle pieghe.

SCATOLA TRIANGOLARE ED ESAGONALE

triangolo equilatero.
esagono regolare

Angolo a 60 gradi e trisezione del lato

Sei triangoli equilaterl formano un esagono regolare, quindi gli angoli ei modi di piegare le scatole triangolari ed esagonali sono simili. Il triangolo equilatero ha tre lati e tre angoll uguall. Cominciamo con il piegare un angolo a 60 gradi partendo da un foglio quadrato; come potete vedere dalla figura è molto semplice: un lato funziona da compasso. Nell'Origami è facile riportare una misura, basta piegare facendo coincidere le misure volute. Per ottenere scatole triangolari ed esagonall si segue sempre questo metodo. Se durante la piegatura tenete presente questa regola non incontrerete difficoltà. Sempre applicando questa tecnica si puó dividere il quadrato in parti uguali. Nell'Origami si devono risolvere tuttil i problemi solo piegando, senza aiuto di strumenti. Piegare 1:2, 1:4, 1:8, 1:16, etc. è facile, ma $1 / 3$ non è altrettanto facile. Dopo aver pensato per lungo tempo al metodo piû adatto, piü semplice ed essenziale, un giorno, dopo molti tentativi, per caso riaprendo uno dei moduli già piegatl per le scatole e osservandolo attentamente, ho scoperto la soluzione che cercavo.
(2)
(1)

piegare 60° e 30°

(2)
(1)

Origami e geometria

Le figure disegnate sopra rappresentano il modo di ottenere un terzo del lato del quadrato: è stata una scoperta, piü una sorpresa che una gioia. Volevo però la dimostrazione che fosse un terzo esatto e mi sono ricordata che avevo Ill ilbro di Husimi Kodi e Husimi Mitue Geometria dell'Origami". Sfogliandolo in fretta ho trovato subito quel metodo che pensavo fosse una mia scoperta. 10 ero arrivata alla soluzione per tentativi ed errori, non attraverso l'applicazione di regole geometriche.
Riuscendo a fare le scatole triangolari ed esagonali e l'esatta trisezione del lato, la geometria dell'Origami risulta evidente. Penso che ''origami e la geometria abbiano i loro mondi propri, ma si incrociano. Ognuno ha un diverso e profondo significato.
Mi piace l'origami piü che la geometria e quando riesco a comprendere una regola mi sento molto soddisfatta applicandola nelle creazioni dell'Origami.

> - inon disponibile in italiano)

(3)

Nessuno ha mai pensato di fare scatole triangolari, io almeno non ne ho mai viste. Dopo aver plegato scatole dalle forme piü varie, sono arrivata a tentare di realizzare anche scatole a tre lati che avevo sempre trascurato, perché ritenevo che gli angoll fossero troppo acuti e la forma inelegante, troppo fredda Provando e riprovando, alla fine è riuscito un oggetto assal grazioso e placevole. Probabilmente a causa della consistenza della carta gli angoli acuti risultano ammorbiditi. Mi sono accorta, inoitre, ripetendo con attenzione le piegature che si crea automaticamente lo stesso fenomeno di giusta adattablità fra ba se e coperchio, come per le scatole quadrate di cui ho gia detto. Come potete vedere dai disegni cambiando la profondità si puỏ ottenere una scatola grande, media, piccola e piccolissima. Naturalmente non riduciamo la misura del foglio di carta, nẻ spostiamo le pieghe.
piccolissima

L'Origami è veramente interessante e magico. Da fogil di carta quadrati della stessa misura si puó ottenere la scatola triangolare e per di più un KASANEBA KO, ció una serie di scatole una dentro l'aitra, In seguito le scatole triangolari sono diventate le mie favorite. Per contenere biscotti uso la grande, è robusta e non escono le briciole, una merenda diventa piú gradevole se presentata in questa scatola. Per la piccolissima é sfruttato il procedimento per ottenere un terzo del lato (pag. 55), non ho descritto la sua piegatura, ma si puó facilmente riuscire ad eseguirla imitando la piccola.

scatole esagonall, A e B

Potete usare fogll di tre colori. Inoltre potete variare le istruzioni scambiando la piegatura a monte con la piegatura a valle; si formerà un disegno diverso sul coperchio. come potete vedere dalle fotografie di queste
pagine.

PIEGARE A MONTE E PIEGARE A VALLE

Quando sento parlare all'improvviso lingue straniere, il loro magico suono mi fa sognare e mi sento romantica. Sarebbe veramente una cosa meravigliosa poter parlare almeno una lingua straniera; le porte delle conoscenze si spalancherebbero su nuovi mondi. Si sente dire che la simbologia dell'Origami è difficile da capire anche guardando bene le figure. Ma d'altra parte si sente dire anche che I bambini riescono a piegare guardando le figure senza capire Il significato dei simboll. Probabilmente perché l'Origami é un gioco in tre dimensioni che si può muovere nello spazio liberamente
Nella piegatura della carta, pensateci bene, ci sono due moviment: piegare a monte e piegare a valle, che poi sono lo stesso movimento visto da due punti opposti. Guardate la fig. I: il bambino e la ragazza sono di fronte e la ragazza legge un libro. Per la ragazza la rilegatura del libro é piegata a valle, ma per il bambino é a monte, varia dunque a seconda del lato da cuil è vista. Il divertimento che trovo nell'Origami sta anche in questa magia
L'operazione del piegare consiste nel portare la carta da una parte all'altra. Se condo la nostra struttura fisica e mentale generalmente la piega a valle è piư facile da fare che non quella a monte. In pratica nol pieghiamo quasi sempre a valle, vedi fig. II. Per piegare a monte noi rovesciamo il fogilio, pleghiamo a valle e poi riportiamo la carta nella posizione indicata dal disegno, cioè a monte.

(Fig. II)

a fiore

- doppia stella variante
(stessa decorazione)

Probabilmente alcuni possono incontrare difficoltä, perché il simbolo di piegatura a monte non corrisponde direttamente all'operazlone da eseguirsi. Questl due tipi di pleghe richiedono praticamente lo stesso procedimento manuale, ma con aspetti opposti come, concettualmente, le parole valle e monte. vediamo un esempio nel fiorellino della scatola ottagonale. Se si scambiano le pieghe a valle e a monte e si rovescia l'interno e l'esterno si avranno delle stelle concentriche e la posizione dell'aletta e della tasca sono anch'esse rovesciate da destra a sinistra. Queste stelle concentriche assomigliano a quelle di pag, 47, ma i ganci di bloccaggio sono contrari alla rotazione (fig. ilil. Simili non soltanto nella figura, ma anche nella costruzione: rotazione in senso orario nel primo caso e antiorario nel secondo.
Scambiando la piegatura a monte con quella a valle spesso si cambla il risultato, oppure, viceversa, la diversa piegatura risulta la stessa ripetuta. Mi sono accorta che questo fenomeno è plü sentito nell'Origami modulare, poiché lorigami modulare offre risultati precisi; o riesce o non riesce, La metamorfosi de risultati ottenuti scambiando la piega a monte con la piega a valle mi ha sorpresa. Spesso tentando e ritentando una piega non riuscivo ad ottenere ció che avevo in mente, ma al momento della rinuncia, per caso, sono arrivata al successo soltanto invertendo i due tipi di pieghe. Dopo tanta esperienza solo adesso riesco ad intuire abbastanza bene quale devo scegliere.
La carta da origami tradizionalmente é colorata solo da un lato: questo contrasto fra bianco e colore mi ha aiutata molto nella scelta fra plega a montee piega a valle. Non so chi abbia deciso di usare questo tipo di carta per l'origami, ma io continuo a meravigliarmi per la sua funzionalitá. In veritả io non capisco ancora bene le possibllità creative di queste due pieghe, per cui non sono: ancora ben padrona del loro uso per arrivare ad un determinato risultato; é un mondo troppo grande ed io devo ancora "giocare" molto. Il foglio di carta è piatto, ma una volta piegato diventa un solido: l'Origami per me é un gioco piacevole a tre dimensioni che stimola la mia immaginazione

Capitolo III

FACCIAMO I CUBI

Il cubo ha una forma ben definita con 6 facce, 12 spigoli e 8 vertici, ma se lo realizziamo con la tecnica dell'Origami modulare, le soluzioni costruttive sono molte e dipendono dall'incastro e dal numero di moduli che si vogliono usare. E anche interessante vedere come si possono fare diversi solidi con lo stesso modulo, ma variandone ill numero. La soddisfazione nell'Origami modulare è rap presentata dall'impegno mentale che dopo molti tentativi arriva ad un traguardo
Non si può quasi mai sperare nella fortuna, ma mentre si sta cercando una soluzione se ne puó trovare un'altra a cui non si era pensato. Ci si avvia cosi su un cammino ricco di sorprese imprevedibili constatando altresi come un modulo possa essere sviluppato.

74

Semplificando ancora di piú il modulo tipo Sonobe ho notato che esiste un altro modo di incastrare. Ho notato cioe che I quattro angoli che non avevo piegato forse per pigrizia possono funzionare invece come doppia giuntura. Piegando come nella figura sopra e assemblando 12 moduli si forma una figura che ricorda il cocchio a forma di zucca di Cenerentola, Questo modulo cambla magicamente soltanto con la variazione di una piega. Le combinazioni di 6 e 12 moduli sono raffigurate nelle foto accanto. Ė consigliabile all'inizio incastrare guardando dallinterno.

Da sinistra: 6 modull, 12 modull variantee 12 moduli cocchio

Il modulo del cocchio di Cenerentola subisce qui ancora una metamorfosi con un'altra piega alternativa. Questo è fatto con 12 moduli come potete facimente vedere dal numero del modulf dello spigolo del cubo. Per essere YAGURA, però, deve essere molto robusto e non disfarsi facilmente. Se iniziate a piegare con il colore allinterno il risultato finale è migliore. Se piegate come II disegno il finale cambierà ancora: pensate, provate e divertitevi. La zucca diventa un cocchio. Il cocchio diventa una yagura nell'Origami come nelle favole! funziona la magia.

piegare
lasciando
liberi gil angoil
piegare a soffietto

Come diventa il modulo se aggiungiamo una appendice decorativa? Cosi ho aggiunto una decorazione alla base del modulo (tipo Sonobel evitando di disturbare l'incastro. Si parte dal rettangolo ottenuto da un quadrato tagliato a metà e quindi il risultato finale è piû piccolo del solito.

N.B. variante

II riccio con punte diventa un riccio semplice, infatti cambiando una sola piega spariscono le punte. Aumentando il numero di moduli ottenete un riccio gigante. Per un modulo è importante pensare alla posizione dell'aletta e della tasca. Cercate altre possibilità, c'è sempre un segreto da scoprire.

REGOLE PER IL MIO ORIGAMI MODULARE

Quando riesco a plegare un moduto, comincio subito a pensare ad un'altra pie gatura per vedere se sia possibile qualche miglioramento. Ho un mio modo preferito di piegare: un insieme di regole che mi condizionano (e guidano). Per e sempio, non mi piace lincastro debole, preferisco inserire e non agganciare ri piegando le punte; penso solo a fogli di carta quadrata ecc
Quando mi pongo un traguardo penso a tante possiblilitá per raggiungerlo e ognuna ha isuoi vantaggi e i suoi svantaggi. È raro trovare un modulo perfetto cioe semplice da piegare, con un incastro robusto e di larga applicazione. Perció quando devo fare una scelta e devo considerarel vantaggi e gll svantaggi seleziono quello che mi piace di piú.
Quando un modulo riuscito non rispetta le mie regole, lo considero una eccezione, mi concedo una deroga, come ad esempio il RICCIO di pag. 83 che é derivato dal rettangolo. infatti in generale mi sono ripromessa dil usare solo fogli quadrati, ma questo rettangolo è semplicemente metà di un quadrato ed è derivato da un modulo di Sonobe con l'aggiunta di una decorazione Usare un rettangolo è stato conveniente e vantaggioso; la piegatura è risulta ta piú semplice e la forma piư elegante. Sono uscita dunque dalle mie regole, ma con buone ragioni, considerando il risultato ed ho sempre tenuto sotto controllo questa "deviazione". Vorrei peró attenermi il più possibile alle norme che mi sono imposta.

2 cubl con decorazione

DIMINUIRE IL NUMERO DEI MODULI

Un cubo ha 6 facce. Nell'Origami modulare è norma usare 6 moduli per costruire un cubo. lo ho voluto tentare di costruirne uno con meno di 6 moduli. Guardando libri, pensando, provando e riprovando mi sembrava piú facile aumentare il numero dei moduli anziché diminuirlo. Le difficoltȧ hanno peró stimolato I miei tentativi. L'idea è semplice e banale, guardate la figura sotto Usando moduli con 2 facce, per costruire un cubo ne bastano 2 L'idea di raggruppare piú facce in un modulo si puö anche applicare al numero di lati e di angoli. Fin qui è semplice. La difficoltả é stata poi nel combinare alette e tasche con un assemblaggio il piû solido possibile. Quando infine sono arrivata alla conclusione, dopo tante difficoltà e tante dure prove, ho pensato a quanto il problema fosse in realtả semplice. Ma perché allora non c'ero arrivata prima e piü facilmente? Deve essere la magia dell'Origamit
I modull qui dimostrati sembrano diversi dal disegno che vedete sotto, in realtà sono invece basati sullo stesso principio, solo il meccanismo dell'assemblaggio é diverso. Probabilmente per voi non sono tanto bell, ma questo èill risultato di una sfida per raggiungere un obiettivo che mi ero posta e quindi per me sono preziosi. Per arrivare in cima ad una montagna ci sono diverse vie, qui io ho dimostrato una sola via di una sola montagna: il cubo. Scoprite voi altre vie. Bello o brutto che sia il risultato, il vero valore di un'attivitả sta nelle difffcoltà e nella gioia di superarie.

$6 \div 3=2$

$6 \div 2=3$

cubi di 4 moduli, A e B

cubi di 3 modull, Be A

Guardate bene le figure. L'incastro è come un puzzle. \vec{E} robusto e notevolmente piccolo in confronto alla dimensione del foglio di base, cé una faccia in piü che serve da aletta.

-) inserire fino in fondo

92

Alice nel paese delle meraviglie
Questo e llincastro di due modull, uno come quello sopra e un altro speculare Quello normale è facilissimo da piegare, invece è molto difficile piegare quello speculare, risultando veramente complicato cambiare le pieghe da destra a sinistra. Mentre stavo piegando questo modulo, ho pensato che uno dovesse essere speculare, ma non é stato cosi semplice realizzare quellidea. immaginavo Alice nel paese delle meraviglie quando, entrata nel paese degli specchi, deve essersi trovata come me quando cercavo il modo di piegare specularmente. Molte altre volte troverete la piegatura speculare, vi consiglio di fare come me, cioe mettetevi davanti il modulo normale e fate ogni piega sempre al contrario. Riflettendo sul perché é necessario fare un modulo speculare, mi sono ricordata di come si sbuccia una mela. Mi sono cioe accorta, ed è vero, che anche ill cubo é un solido che si comporta come una sfera.

LA BUCCIA DELLA MELA:
 UN CUBO Ė ANCHE QUASI UNA SFERA

Come può essere raffigurata la buccia di una mela se si continua a tagliarla senza interrompersi? Tanti di voi lo sanno giá. Come nella figura accanto la direzione della spirale cambia a metà strada da destra (senso orario) a sinistra (senso anti-orario). In generale quando si sbuccia una mela sif fa muovere il frut to, ma la mano rimane nella stessa posizione. Analogamente, facendo aderire il paimo della mano alla parte superiore della mela, la mano assumerả una posizione convessia; se scivollamo al di sotto della mela osserviamo che la posizione della mano è ora concava, cioè contraria a quella di partenza.
Facendo passare un asse fra due angoli diagonali di un cubo si puó vedere che anche il cubo ha i poli e si comporta come una sfera. Cosi anche i moduli dovranno essere speculari. Quando si incastrano i moduli, se si guarda da sopra o da sotto o dallinterno, scopriamo cose banali o meravigliose. In questo senso, alla fine del capitolo sul cubi, presento un esempio di tre moduli normali e tre moduli speculari anche se, cosi facendo, mi allontano dal criterio che mi ero posta allínizio e cioè diminuire il numero di moduli nella costruzione del cubo.

Capitolo IV

MODULI DEL TRIANGOLO EQUILATERO

Ci sono molti solidi che possono essere costruiti con i moduli del triangolo equilatero. Qui costruiremo principalmente: il tetraedro e l'icosaedro. Nella vita di tutti i giorni non si incontrano facilmente questi solidi. Io vedevo la loro bellez. za, ma mi chiedevo se sarebbero stati interessanti come figure origami. Piegando e assemblando molte volte ho incominciato a sentire la loro piena espressione di solidi. Poiché con l'Origami si parte da un foglio quadrato bisognava piegare un triangolo equilatero partendo da un quadrato. A moltili procedimento sembrerà poco naturale.
Alcune parti del foglio restano inutilizzate, infatti sono necessarie alcune forzature nelle pieghe, ma ci sono anche del vantaggi come succede sempre nell' O rigami. Ricordate quando facevamo la scatola triangolare ed esagonale, le parti non direttamente utillzzate servono come decorazione o come bloccaggio. Dobbiamo perciò cercare di utilizzare la parte del foglio che non costituisce la superficie del solido. Lo studio di questi modelli poco conosciuti ci fa diventare amici con l'Origami modulare.

icosaedro
20 facce 30 spigol, 12 vertid

ottaedro

tetraedro

DOVE SI APPLICA LA LINEA DI BASE

Della piegatura a 60 gradi abbiamo parlato nel capitolo delle scatole triangolar (pag. 54). Anche quil la chiave è la stessa. II problema è dove applicare questa piegatura. Come si può vedere nella tabella della pagina seguente, spostanido la linea di base nascono tre moduli: grande, medio e piccolo. Ripeto ancora di non piegare seguendo solo i disegni, ma pensando a dove si è piegato l'angolo di 60 gradi, perché capire la ragione della piegatura accresce la gioia e lincanto dell'Origami. Chi capisce, ma sente la mano poco obbediente, continul a plegare finché le dita seguiranno docilmente il disegno.

102

ottaedro
412 regolari +2 speculari) o (4 regolari) o (4 speculari)

tetraedro
(1 regolare + 1 speculare)

ottaedro (12 moduli) e tetraedro (6 moduli) con II modulo B

Per la soluzione All numero di modull normali e speculari è segnato nella dida scalia delle foto. Per B il numero del modulie è uguale al numero del lati, perciò bisogna fare piừ modull che hel caso A; in compenso ill risultato è più grandee di forma diversa. La solidità e la bellezza arrivano fino all'ottaedro regolare licosaedro invece non è bello.
Ma perché accade questo? Lo vedremo piú avanti (errore di calcolo). inoltre con i moduli A si possono ottenere anche delle stelle, ma solo con moduli normali o speculari. Il numero delle combinazioni possibill è limitato solo dalla fragilitá della carta. Potete costruire diversi altri tipi di stelle oltre a quelli qui raffigurati. In conclusione non pensate che sia interessante costruire tre solidi diversi con un solo tipo di modulo?

106

24 modulf

30 moduli

La noia di piegare tanti moduli e la sua funzione rilassante
impazienti di vedere il risultato finale. La ripetitivitá è monotona. Quando arrivate al limite della resistenza, pensate che oggi avete deciso di costruire un 1cosaedro con 30 modull e cosi plegate pensando al bel risultato finale: 10 mo dull. 15 moduli, 20 modull... I| cuore diventa leggero e svaniscono tutti gli altri pensieri. Tra l'altro la noia di piegare tanti modull, a voite, funziona come rilassante quando si è un po' nervosi. Ed è anche la bellezza intrinseca del moduli stessi che si vanno formando a far muovere le mani instancabilmente. I'Origami è un modo di giocare puro. E allora, quando si vuol vedere ill risultato subito, perché non interessare qualcun altro? É piacevole piegare insleme a tutta la famiglia o con gli amici!

icosaedro: 5 modull regolarie 5 speculari

tetraedro (1) regolare + 1 speculare) e ottaedro (4 regolari)
speculare

In confronto al modulo medio la differenza sta solo nella linea di base. L'ordine di plegatura è uguale e per incastrare si usano i moduli speculari nel caso si voglia combinare le facce, però è meno robusto a causa delle sue alette che sono piú piccole. Percio ill modulo e adatto al tetraedro regolare e all'ottaedro regolare, specialmente è divertente il tipo B. L'icosaedro e l'incastro sugli spigoli non sono consigliabili, perché poco robusti, inoltre gll angoli ilsultano poco definitl.

stelle a cinque punte e sel punte (pag. 12)

con I moduli del cappello a cono; sinistra: 12 modull, destra: 30 moduli (pag. 15)

sopra scatole quadrate, A e B (pagg. 29-32)
sotto scatola grande (sinistra) e piccola (destra) (pagg. 35-40)

sopra: scatola ottagonale doppia stella (pagg. 47-50)
sotto: scatoke triangolari ipagg. 57.61)

sopra traliccio isinistra) e cocchio (destra) (pagg. 76-79)
sotto poliedri ottenuti con II modulo di Sonobe semplificato; da sinistra, 30,6 e 10 modull (pag. 73)

sopra cubi con ill modulo a muso di volpe (pag. 81) sotto quattro cubl ipagg. 89.96)

6 modull (normall e speculari)

4 modulf

poliedri stellari con II moduio medio:
30 modull, 24 modull, 6 modull, 10 modull (pagg. 103-107-119)

sopra: poliedri con il modulo piccolo
da sinistra; icosaedro, tetraedro e ottaedro regolari (pagg. 121-123)
sotto: polledri con il modulo a petalo: 12 e 30 moduli (pag. 124

(ampioncini, due tipi di dodecaedro lpag. 142)
dodecaedro con 12 modull (pag. 151)

scatola pentagonale (pag. 147)

Errori di calcolo

Nel caso vogliate costruire l'icosaedro questo modulo piecolo è più adatto del modulo medio. Ma allinizio ero convinta che si potesse farlo con il modulo medio. Fra questi tre moduli, il piccolo é quello che mi é riuscito per primo. Con molta gioia ho provato Tincastro di faccia e di spigolo, ma la sovrapposizione degli strati di carta era eccessiva; l'incastro di spigolo poi è poco robusto e le stelle non sono risultate di mio gusto.
Pensando che la causa di questi inconvenienti fosse la troppa carta intascata sono arrivata a fare il modulo grande e Il medio. Quest'ultimo mi ha subito soddisfatta. La carta é ben sfruttata, lincastro è robusto sia di faccia che di spigolo.
Ma c'era una trappola imprevista come spesso succéde nell'Origami.
Quando un modulo è riuscito deve avere la capacità di formare un tetraedroe un icosaedro; accade peró che uno riesca e l'altro no.

polledro di 30 modull
ottaedri ottenuti con I moduli medio e piccolo (incastro sullo spigolo).

L'operazione di piegare e lo spessore creano imprecisioni incalcolabili ed imprevedibili. Anche nel caso dellincastro ottenuto col modulo medio, che pensavo dovesse andare bene, dopo la preparazione di 30 modull ho trovato lincastro debole, che delusionel Questo tipo di errore accade spesso; a volte succede persino che durante l'assemblaggio, a metà strada, si disintegri tutto. Le figure origami sono ingombranti, i moduli di tanti colori sono sparsi dappertutto nella stanza, come un castello di sogno distrutto da un tornado. Ero scoraggiata e quasi esaurita. Fiduciosa peró nel successo ho ripetuto le prove infinite volte, finché finaimente ho capito l'ostacolo, ma purtroppo dopo tantissimo tempo. Uno stesso modulo si incastra facimente o non si incastra, basta che una piega venga fatta prima di un'altra. Quando ciò si verifica quasi impazzisco: una macchina che piega carta in continuazione, scartando inesorabilmente I pezzi piegati! L'Origami é incredibile e imprevedibile proprio come una creatura vivente.

DIMINUIRE IL NUMERO DEI MODULI

Anche qui tentiamo di diminuire il numero dei moduli come abbiamo già fatto per il cubo. Nel caso del tre modull precedenti grandi, medi e piccoli ognuno è composto di due facce quindi, lavorando sullo siruttamento delle facce, si puó dimezzare il numero dei moduli occorrenti. Inoltre ci sono diversi modi di incastrare, quindi cresce la varietả dei solidi ottenibili. In generale, però, i moduli creati per economizzare sul numero diventano "speciali". II divertimento risulta minore, ma diventa interessante sotto un altro aspetto: qui pensiamo ad altre strutture rispetto ai tre modull precedenti, per diminuire ll numero del modull. il suggerimento per questa ricerca é lo stesso dato per il cubo, cioé quante facce fare con un solo modulo?

icosaedro con 6 modull

Poiché questo modulo é un po' difficile sono illustrate le pieghe distese e la figura del modulo. I piú esperti provino a realizzarlo. La linea dell'inizio è quella del modulo piccolo. Si puó piegare anche sfruttando la trisezione del lato.
pleghe distese

poliedir ottenuti con imodulil AeC

Mi piace molto, perché le linee risultano ben rimarcate. Il disegno delia soluzione appare come l'insegna di un barblere. La costruzione è interessante: tre moduli normali e tre moduli speculari. Si prepara prima la parte superiore e poi linferiore, quindi si riuniscono le due parti. Per un solido si usano due modi di incastro. La parte superiore ela parte inferiore di questo ottaedro non sono uguali. Se si unisce la punta di ciascun gruppo di tre modull si riesce a fare un tetraedro.
Nell'Origami ill risultato è chiaro e deciso: o riesce o non riesce. La gioia che si prova quando, dopo infiniti tentativi di piegatura, si comincia a intravedere una via per raggiungere il traguardo e già si comincia a sentire il successo, è impareggiabile.

poliedri con 5, 2e 1 modulo

Scambiando una aletta ed una tasca del precedente modulo si possono costruire I tre tipi di solidi qui raffigurati. É cosi diventato un modulo piú universale, però ci sono ancora alcune difficoltà da superare e particolari đa migliorare. Nel tetraedro e nell'ottaedro regolari ci sono molte sovrapposizioni di carta e quindi le superfici diventano piú ondulate. Inoltre metà della superficie di ogni faccia risuita con la carta rovesciata, cioé generalmente bianca, quindi c'é una questione di colore. Pertanto sia il primo modulo che il secondo hanno un loro problema da migliorare, clononostante ho pubblicato questo modulo come riferimento e perché ognuno cerchi una soluzione piü soddisfacente. Là collaborazione di più origamisti puó portare alla creazione di tanti moduli nuovi.

AD UN PASSO DALLA CREAZIONE

Quando faccio vedere alla gente le mie scatole ei miei solidi, dopo qualche e clamazione di entusiasmo spesso mi sento domandare se sono stata propriolo are e fiqure e quale tipo di struttura mentale sia necessaria en arrivare a creare questi moduli. Esclamazioni di meraviglia, ma nello stesso tempo di accorato rammarico e rinuncia per la propria supposta incapacitá a fare altrettanto.
Questa è esattamente la sensazione che ho avuto anch'io quando ho incontra - 'Ocigmi moditare per la prima volta Non avrel mai immaginato di appas. sionarm cosi a questa forma di Origami e di essere capace di creare tanti moduli la procedura che seguo è sempre magicamente la stessa, il risultato a volte sorprendente, a volte da modificare. All'inizio rimango sempre stupita e incantata di fronte a un nuovo frutto del mio impegno e credo che non esista realizzazione migliore. Mentre plego peró i numerosi moduli per realizzare la figura, mi viene I'idea che possa esistere un'altra soluzione e allora provo; anche se dovesse risultare di qualitả inferiore, rimane sempre una mia creazione comunque.
Ci sono tanti modi di provare soddisfazione con l'Origami. Fra questi, trovare nuovi modi di piegare é un godimento superiore, c'é anche la gioia di dar vita a qualcosa di ed è naturale desiderare di creare qualcosa di nuovo. Senza questo incentivo non si aprono nuove strade
All'inizio peró è importante provare a piegare moduli già esistentie mentre si Aiega pensare ai punti chiave dellincastro e alla struttura che hanno. Il secondo passo è uquale al primo: si deve cioé desiderare fermamente di voler fare una data cosa, ad esempio una scatola ottagonale a un cubo con tre moduli ecc.
ani tanto penso a cosa serva piegare carta, forse non serve a niente, solo a perdere tempo, ma non posso smettere. Voglio creare, voglio sapere, voglio capire. Voglio conoscere piú a fondo tutte le possibilit tà e le caratteristiche dele pieghe. Se mi si chiede quale soddis azione senta dopo aver saputo, non so rispondere Ripetendo gli errori imparo e provo una gran gioia nel sapere e capire di più.

Capitolo V

SFIDA AL DODECAEDRO

dodecaedro

Molte voite ho tentato e ritentato I dodecaedri senza arrivare neppure ad un punto iniziale, mia dentro di me pensavo che un giorno o l'altro me lo sarei costruito: non potevo rinunciarvi per nessuna ragione. Come ero pur riuscita a realizzare i cubi e i tetraedri seguendo il metodo che mi ero prestabilita, altrettanto non mi veniva nessuna idea per i dodecaedri: tuttavia mi ero imposta ugualmente di vincere la sfida e cosi continuavo ad insistere, spronata proprio come da una mania, mentre sulla mia scrivania si andavano ammucchlando fogli piegati in un disordine spaventoso, un vero caos!
Dovevo farcela ad ogni costo: un giorno, continuando con perseveranza a tentare, sarei ben arrivata alla meta. E infattici sono riuscita sia pure in modo poco convincente, in realtà non ero rimasta troppo soddisfatta e neppure ora sono in grado di giudicare se sono validi a no. Bisognava piegare un pentagono regolare partendo dal quadrato. Se avessi semplificato sarebbe stato piú facile: ma poi l'approssimazione sarebbe aumentata e gli spigoll del solidi non sarebbero stati ben definiti. Non mi vergogno a dire che qui dimostro un limite delle mie capacitả nella costruzione del dodecaedro e chiedo i vostri tentativi per migliorarlo.

PIEGARE A 72 GRADI

Nel mio primo libro Divertimento con I'Origami* (editore Chikuma), ho descritto il metodo tradizionale per piegare il pentagono partendo da quadrato. Poiché il metodo tradizionale aveva una approssimazione abbastanza lontana dai 72 gradi richiesti, due grandi origamisti mi hanno aiutato a risolvere il problema. Chi è interessato legga il ibro di K. Husimi e M. Husimi: Ceometria dell'Origami
K. Kasahara mi ha insegnato come ridurre l'errore del metodo (A) mentre Husimi mi ha scritto indicandomi un altro sistema di piegature che dả una migiore approssimazione (B).
Allora sfruttando questi ultimi due metodi cominciamo a fare il dodecaedro.
inon tradottlin italiano).

RETTANGOLO 1:3

Una volta ho visto in un libro di Kasahara un dodecaedro ottenuto con un modulo rettangolare (1:3): ho aperto le piegature che costituivano la costruzione del pentagono col metodo tradizionale e ho capito che vi era nascosto uri rettangolo con i lati di 1:3. Qui vi presento due modulli nati da questa osservazione.

dodecaedro con 30 modull

Poiché il rettangolo con i lati $1: 3$ è la chiave per la costruzione del dodecaedro ho fatto questo modulo usando la trisezione del lato. E piú fa cle da capire in confronto al precedente e l'incastro è piü solido, ma è una fatica fare 30 moduli. Avrei voluto chiedere l'aiuto delle mani di cinque, anche di cani e gatti.

La scatola pentagonale è piuttosto rara, come quella triangolare.
Questa scatola è forse alquanto banale sulla parte esterna, ma contiene una sorpresa nell'interno: una stella ottenuta dal doppio incastro. Anche questi disegni che si formano allinterno in modo imprevisto sono un placevole divertimento dell'Origami.

Il segreto del montaggio è questo: allinizio incastrate due moduli e considerateli come un nuovo modulo. Questo nuovo modulo risulta elastico e poco robusto, ma quando 6 dl questi modull sono assemblati diventano più solidi. Nella piegatura ci sono delle parti inutill (vedi passaggio 20), ma le ho ignorate, perché servono a rendere Il solido piü robusto. Ho ammirato questo dodecaedro per la sua bellezza e per la sua armonia di forma.

dodecaedro con 5 moduli regokari e 5 speculari
(2 moduli uniti danno il nuovo modulo usato)

In queste due pagine vi presento tre fotografie A, B, C. Come riferimento, i dodecaedri di A e B sono costruiti incastrando 10 moduli divisl fra emisfero sud e nord. Quello di C è fatto con 12 modulif. Dopo aver realizzato il dodecaedro mi sono accorta in quanti modi si possa dividere un solido, cioè quanti modi esistono per tagliare un "melone". Quando ci sono 100.12 bambini e bisogna tagliare fette uguali per tutti mi chiedo se esiste un metodo per suddividere equamente il melone per 100 per 12. Pensate anche voi ai diversi modi di suddividere un melone. Equivale a saper costruire altrettanti solidi diversi.

dodecaedro con 5 moduli regolarl es modull specular

[^0]

IL. PROBLEMA DELL'APPROSSIMAZIONE
Nell'Origami, per fare un solido geometricamente esatto, è indispensabile applicare il procedimento più valido per ottenere la maggior precisione possibile. Anche quando si usa un sistema che si sa a priori approssimato, è meglio conoscere il risuitato ottimale per poter calcolare quanto sarà alla fine l'inesattezza. Come ho già spiegato, in qualsiasi Origami l'operazione dil piegare crea un inevitabile errore di esattezza dovuto allo spessore della carta piegata. Anche se in teoria la piega è perfetta, quando si sovrappongono numerose piegature si somma per ognuna di esse una imperfezione che, se pur lievissima, alla fine farả cumulo con notevoli conseguenze (anche se le imperfezioni, a volte, parzialmente si compensano). Nel caso dell'origami modulare queste inesattezze saranno moltiplicate. Ne consegue anche che se il metodo seguito non dà un risultato perfetto, ma è semplice, l'errore in pratica sarà alla fine inferiore di quello dato da un metodo piú preciso, ma plü elaborato, per cui in definitiva risulterà piú adatto. A parte ció si può ridurre l'errore dovuto allo spessore delle pieghe sovrapposte cambiando l'ordine di successione delle pieghe stesse. II miglioramento del metodo tradizionale ottenuto da Kasahara (pag. 140) è riuscito grazie all'osservazione di questo fenomeno.
Dobbiamo poi pensare all'effetto dello spessore del foglio. Per esempio nel caso della gru, teoricamente non si potrebbe plegare a metả (fig. A), né fare ll becco (fig. B), invece in realtá cisi riesce, perché la carta è sempre un po' "elastica". Dopo aver fatto tanto "origami geometrico", chiamato Origami modulare, ho capito che l'Origami è molto diverso dalla geometria e va piegato dalle mani dell'uomo. La gru dell'Origamiè bella solo in quanto fatta dall'uomo, lo credo; anche se quando piego 20030 moduli desidererei avere una macchina che piega per me, rimango convinta che nessuna macchina possa e sappia sostitulre le nostre mani!
Ho illustrato ll modo di piegare l'angolo di 72 yradi esatto di Kasahara (A) e Husimi (B), ma finora io ho usato solo il metodo approssimato. Penso peró che si potrebbe fare il dodecaedro seguendo il metodo geometricamente esatto, ma personalmente non sono riuscita ancora a sfruttarlo.

CONCLUSIONE

L'Origami modulare è un Origami molto preciso. Per fare un modello ci vogliono molti fogll, tanto tempo e tanta pazienza. Ma dopo aver piegato e incastrato si capisce la logica del gioco. E quando ci si ritrova in mano || solido finito e completo si prova quasi più sorpresa che gioia. Una delle ragioni per cuil l'Origami modulare mi incanta e mi appassiona è che dả un risultato evidente e che mi spinge a capire di più.
L'Origami modulare è solo una parte del ricco mondo dell'Origami e ci sono ancora tante cose da scoprire. All'inizio l'Origami ci impegna le dita, ma poi, usando le dita, bisogna capire e c'è unà notevole differenza fra I due modi di fare Origami. Ad ogni modo piegate e cercate con le vostre mani il contatto con questo nuovo mondo. Sarò felice se questo libro diventerà una piccola guida. vorrel approfondire questo campo insieme a vol.
La realizzazione di questo libro é stata possibile grazie all'aiuto di tante persone. Kasahara, il farnoso origamista, mi ha illuminato con le nuove scopertee con diversi suggerimenti. Torimi Taroo mi ha regalato delle "incisioni". Yamada Takao della casa editrice Chikuma, nonostante non appassionato di Origami, ha piegato quasi tutti i modelli proposti in queste pagine e mi ha indicato le parti che non capiva e che andavano splegate meglio. Mi sono meravigliata per la sua passione e per limpegno nel capire ill libro. Maesawa M. sua figlia e la famiglia dell'editore hanno fatto le prove di piegatura prima della stampa. Kanaizuka Kazuo ha fatto le foto durante un caldo agosto. A tuttill mio più vivo ringraziamento.

INDICE

PREFAZIONE 3
AVVERTENZA DEI TRADUTTORI 4
INTRODUZIONE 5
SIMBOLOGIA a 6
CAPITOLO I / MODELLI TRADIZIONALI E FORME VARIE 7
MENKO (Piastra) 8
SCIURIKEN (Coltello da lanciare) 10
HOSCI (Stelle) 12
TONGARI BOOSCI (Cappello a cono) 15
KAMENOKO (Tartaruga) 18
KOMPEITOO (Confetti glapponesi) 21
CAPITOLO II / FACCIAMO LE SCATOLE 25
Scatola quadrata e ottagonale 26
COPERCHIO DELLA SCATOLA QUADRATA: MULINELLO (4 moduli) 29
BASE DELLA SCATOLA QUADRATA (4 moduli 33
COPERCHIO DELLA SCATOLA (2 moduli) 35
SCATOLA PICCOLA 12 moduli) 39
SCATOLA GRANDE (2 moduli) 41
COPERCHIO DELLA SCATOLA OTTAGONALE A FIORE 45
COPERCHIO DELLA SCATOLA OTTAGONALE A DOPPIA STELLA 47
BASE DELLA SCATOLA OTTAGONALE 51
Scatola triangolare ed esagonale 54
SCATOLA TRIANGOLARE MEDIA 57
SCATOLA TRIANGOLARE GRANDE E PICCOLA 59
COPERCHIO DELLA SCATOLA ESAGONALE 63
BASE DELLA SCATOLA ESAGONALE 67
Piegare a monte e piegare a valle 69
CAPITOLO III / FACCIAMO I CUBI 71
MODULO DI SONOBE SEMPLIFICATO 73
COCCHIO DI CENERENTOLA 76

YAGURA (Traliccio)

RICCIO 81
Regole per il mio Origami Modulare

83

Diminuire il numero dei moduli
CUBO CON COMBINAZIONE DI 4 MODULI
OMBINAZIONE DI 3 MODUL
CUBO CON COMBINAZIONE DI 2 MODULI91
anche quasi una sfera
INCASTRO DI 6 MODULI NORMALI E SPECULAR

CAPITOLO IV / MODULI DEL TRIANGOLO EQUILATERO
IL MODULO MEDIO103

VARIANTE DEL MODULO MEDIO 1°108

VARIANTE DEL MODULO MEDIO 2°
IL MODULO GRANDE
IL MODULO PICCOLO
MODULO PICCOLO: VARIANTE A PETALO121
124Diminuire il numero dei moduliOTTAEDRO CON 6 MODUU129
ICOSAEDRO CON 5 MODUL/ $/ 1^{\circ}$ 133
ICOSAEDRO CON 5 MODUL $/ 2^{\circ}$ 134
CAPITOLO V / SFIDA AL DODECAEDRO 137
Piegare a 72 gradi 139
Rettangolo 1:3 141
DODECAEDRO CON 30 MODULI/ $1{ }^{\circ}$ LAMPIONCINO 142
DODECAEDRO CON 30 MODUU $/ 2^{\circ}$145
COPERCHIO DELLA SCATOLA PENTAGONALE 147
DODECAEDRO CON 12 MODUU 151
Il problema dell'approssimazione 156

ANTOLOGIA DI ORIGAM ANIMALI
CONCLUSIONE

CONCLUSIONE158

[^0]: dodecaedro con 12 modull

